Trong các bài từ 51 đến 63, hãy chọn kết quả đúng trong các kết quả đã cho.

chọn kết quả đúng trong các kết quả đã cho.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giá trị lớn nhất của các biểu thức \({\sin ^4}x + {\cos ^4}x\) là :

A. 0

B. 1

C. 2

D.  \({1 \over 2}\)

Lời giải chi tiết:

Chọn B vì:

\({\sin ^4}x + {\cos ^4}x \)

\( = \left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2 - 2{\sin ^2}x{\cos ^2}x\)

\(= 1 - 2{\sin ^2}x{\cos ^2}x \le 1\)

Giá trị bé nhất của biểu thức \(\sin x + \sin \left( {x + {{2\pi } \over 3}} \right)\) là

A. -2

B.  \({{\sqrt 3 } \over 2}\)

C. -1

D. 0

Lời giải chi tiết:

Ta có:  \(\sin x + \sin \left( {x + {{2\pi } \over 3}} \right)\)

\(=2\sin \left( {x + {\pi \over 3}} \right)\cos {\pi \over 3}\)

\(= \sin \left( {x + {\pi \over 3}} \right) \ge - 1\)

Chọn C

Tập giá trị của hàm số \(y = 2\sin2x + 3\) là :

A. \([0 ; 1]\)

B. \([2 ; 3]\)

C. \([-2 ; 3]\)

D. \([1 ; 5]\)

Lời giải chi tiết:

Ta có: \(-1 ≤ \sin 2x ≤ 1 \) \( \Rightarrow  - 2 \le 2\sin 2x \le 2 \)

\(\Rightarrow 1 \le 2\sin 2x + 3 \le 5\)

\(⇒ 1 ≤ y ≤ 5\)

Chọn D

Tập giá trị của hàm số \(y = 1 – 2|\sin3x|\) là

A. \([-1 ; 1]\)

B. \([0 ; 1]\)

C. \([-1 ; 0]\)

D. \([-1 ; 3]\)

Lời giải chi tiết:

Vì \(0 ≤ |\sin3x| ≤ 1\) nên \(-1 ≤ y ≤ 1\)

Chọn A

Giá trị lớn nhất của biểu thức \(y = {\cos ^2}x - \sin x\) là

A. 2

B. 0

C.  \({5 \over 4}\)

D. 1

Lời giải chi tiết:

Ta có:  

\(\eqalign{
& y = 1 - {\sin ^2}x - \sin x \cr&= 1 - \left( {{{\sin }^2}x + \sin x} \right) \cr 
& = {5 \over 4} - \left( {{{\sin }^2}x + \sin x + {1 \over 4}} \right) \cr&= {5 \over 4} - {\left( {\sin x + {1 \over 2}} \right)^2} \le {5 \over 4} \cr} \)

Chọn C

Tập giá trị của hàm số \(y = 4\cos2x – 3\sin2x + 6\) là :

A. \([3 ; 10]\)

B. \([6 ; 10]\)

C. \([-1 ; 13]\)

D. \([1 ; 11]\)

Lời giải chi tiết:

Ta có:

\(\eqalign{& 4\cos 2x - 3\sin 2x\cr& = 5\left( {{4 \over 5}\cos 2x - {3 \over 5}\sin 2x} \right) \cr & = 5\left( {\cos 2x\cos \alpha - \sin 2x\sin \alpha } \right)\cr&\text{với}\,\left\{ {\matrix{{\cos \alpha = {4 \over 5}} \cr {\sin \alpha = {3 \over 5}} \cr} } \right. \cr & = 5\cos \left( {2x + \alpha } \right) \cr&\Rightarrow y = 6 + 5\cos \left( {2x + \alpha } \right)\cr& \Rightarrow 1 \le y \le 11 \cr} \)

Chọn D

Khi \(x\) thay đổi trong khoảng \(\left( {{{5\pi } \over 4};{{7\pi } \over 4}} \right)\) thì \(y = \sin x\) lấy mọi giá trị thuộc

A.  \(\left[ {{{\sqrt 2 } \over 2};1} \right]\)

B.  \(\left[ { - 1; - {{\sqrt 2 } \over 2}} \right)\)

C.  \(\left[ { - {{\sqrt 2 } \over 2};0} \right]\)

D.  \(\left[ { - 1;1} \right]\)

Lời giải chi tiết:

Ta có:  

\({{5\pi } \over 4} < x < {{7\pi } \over 4} \)

\(\Rightarrow - 1 \le \sin x < - {{\sqrt 2 } \over 2} \)

\(\Rightarrow - 1 \le y < - {{\sqrt 2 } \over 2}\)

Chọn B

Khi \(x\) thay đổi trong nửa khoảng \(\left( { - {\pi \over 3};{\pi \over 3}} \right]\) thì \(y = \cos x\) lấy mọi giá trị thuộc

A.  \(\left[ {{1 \over 2};1} \right]\)

B.  \(\left( { - {1 \over 2};{1 \over 2}} \right)\)

C.  \(\left( { - {1 \over 2};{1 \over 2}} \right)\)

D.  \(\left[ { - 1;{1 \over 2}} \right]\)

Lời giải chi tiết:

Ta có:  

\( - {\pi \over 3} < x \le {\pi \over 3}\)

\(\Rightarrow {1 \over 2} \le \cos x \le 1\)

\(\Rightarrow {1 \over 2} \le y \le 1\)

Chọn A

Số nghiệm của phương trình \(\sin \left( {x + {\pi \over 4}} \right) = 1\) thuộc đoạn \([π ; 2π]\) là

A. 1

B. 2

C. 3

D. 0

Lời giải chi tiết:

Ta có:  

\(\sin \left( {x + {\pi \over 4}} \right) = 1 \)

\(\Leftrightarrow x + {\pi \over 4} = {\pi \over 2} + k2\pi \)

\(\Leftrightarrow x = {\pi \over 4} + k2\pi \)

\(\pi  \le \frac{\pi }{4} + k2\pi  \le 2\pi  \Leftrightarrow \frac{3}{8} \le k \le \frac{7}{8}\)

Do k nguyên nên không có k thỏa mãn.

Phương trình không có nghiệm thuộc \([π ; 2π]\)

Chọn C

Số nghiệm của phương trình \(\sin \left( {2x + {\pi \over 4}} \right) = - 1\) thuộc đoạn \([0 ; π]\) là

A. 1

B. 2

C. 3

D. 0

Lời giải chi tiết:

Ta có:  

\(\sin \left( {2x + {\pi \over 4}} \right) = - 1 \)

\(\Leftrightarrow 2x + {\pi \over 4} = - {\pi \over 2} + k2\pi \)

\(\Leftrightarrow x = - {{3\pi } \over 8} + k\pi \)

\(0 \le  - \frac{{3\pi }}{8} + k\pi  \le \pi  \Leftrightarrow \frac{3}{8} \le k \le \frac{{11}}{8}\)

\(\Rightarrow k = 1\) ta được nghiệm \(x = {{5\pi } \over 8} \in \left[ {0;\pi } \right]\)

Chọn A

Một nghiệm của phương trình \({\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = 2\) là

A.  \({\pi \over {12}}\)

B.  \({\pi \over {3}}\)

C.  \({\pi \over {8}}\)

D.  \({\pi \over {6}}\)

Lời giải chi tiết:

Chọn D. Thử trực tiếp.

Số nghiệm của phương trình\(\cos \left( {{x \over 2} + {\pi \over 4}} \right) = 0\) thuộc khoảng \((π ; 8π)\) là

A. 1

B. 3

C. 2

D. 4

Lời giải chi tiết:

Ta có:  

\(\cos \left( {{x \over 2} + {\pi \over 4}} \right) = 0 \)

\(\Leftrightarrow {x \over 2} + {\pi \over 4} = {\pi \over 2} + k\pi \)

\(\Leftrightarrow x = {\pi \over 2} + k2\pi \)

\(\pi  < \frac{\pi }{2} + k2\pi  < 8\pi  \Leftrightarrow \frac{1}{4} < k < \frac{{15}}{4}\)

Chọn \(k{\rm{ }} \in {\rm{ }}\left\{ {1;{\rm{ }}2;{\rm{ }}3} \right\}\)

Chọn B

Số nghiệm của phương trình \({{\sin 3x} \over {\cos x + 1}} = 0\) thuộc đoạn \([2π ; 4π]\) là

A. 2

B. 4

C. 5

D. 6

Lời giải chi tiết:

Ta có:  

\({{\sin 3x} \over {\cos x + 1}} = 0\)

\(\Leftrightarrow \left\{ {\matrix{{\sin 3x = 0} \cr {\cos x \ne - 1} \cr} } \right. \)

\(\Leftrightarrow \left\{ {\matrix{{x = k{\pi \over 3}} \cr {x \ne \pi + k2\pi } \cr} } \right.\)

\(2\pi  \le x \le 4\pi  \Leftrightarrow 2\pi  \le \frac{{k\pi }}{3} \le 4\pi  \)

\(\Leftrightarrow 6 \le k \le 12\).

Cho k nhận các giá trị từ 6 đến 12 ta thấy \(x = \frac{{9\pi }}{3} = 3\pi \) có \(\cos x=-1\) nên không thỏa mãn(loại).

Chọn \(k \in {\rm{ }}\left\{ {6;{\rm{ }}7;{\rm{ }}8;{\rm{ }}10;{\rm{ }}11;{\rm{ }}12} \right\}\)

Chọn D.

 Loigiaihay.com

Quảng cáo

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

close