Trong không gian tọa độ Oxyz cho đường thẳng có phương trình a) Viết phương trình hình chiếu của trên các mặt phẳng tọa độ. b) Chứng minh rằng mặt phẳng đi qua đường thẳng . c) Tính khoảng cách giữa đường thẳng và các trục tọa độ. d) Viết phương trình đường vuông góc chung của hai đường thẳng và e) Viết phương trình đường thẳng song song với Oz, cắt cả và ’.
Xem lời giảiTrong không gian tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(2; 0; 1). a) Tìm quỹ tích các điểm M sao cho b) Tìm quỹ tích các điểm N sao cho c) Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy).
Xem lời giảiTrong không gian Oxyz, cho đường thẳng có phương trình trong đó a, b, c thay đổi sao cho a) Chứng minh rằng đường thẳng đi qua một điểm cố định, góc giữa và Oz là không đổi. b) Tìm quỹ tích các giao điểm của và mp(Oxy).
Xem lời giảiCho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c. a) Tính khoảng cách từ điểm A tới mp(A’BD). b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D. c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.
Xem lời giải1. Cho H là hình chóp tứ giác đều S.ABCD. Xét các mặt phẳng (SAC), (SAB), (SBD), (ABC), (SOI), trong đó I là trung điểm của AB, O là tâm hình vuông ABCD. Trong các mặt phẳng đó, có bao nhiêu mặt phẳng là mặt phẳng đối xứng của H ?
Xem lời giảiCâu 2. Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C(0; 0; 4), C’(0; 0; 3). a) Viết phương trình mặt cầu đi qua 4 điểm A, A’, B, C. Chứng minh rằng B’ và C’ cũng nằm trên mặt cầu đó. b) Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó. c) Tính khoảng cách từ điểm O tới giao tuyến của mp(ABC’) và mp(A’B’C).
Xem lời giảiCâu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a va cạnh bên bằng . a) Tính thể tích của hình chóp đã cho. b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. c) Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau.
Xem lời giảiCâu 1. Cho tứ diện đều ABCD có cạnh bằng a. Gọi B’, C’, D’ lần lượt là trung điểm của các cạnh AB, AC và AD. a) Chứng minh rằng 6 điểm B, C, D, B’, C’, D’ nằm trên một mặt cầu. Tìm bán kính của mặt cầu đó. b) Tính thể tích khối chóp D.BCC’B’.
Xem lời giảiCâu 1. Cho hình hộp ABCD.A’B’C’D’. Gọi N là điểm nằm trên cạnh AB và là mặt phẳng đi qua ba điểm D, N, B’. a) Mặt phẳng cắt hình hộp đã cho theo thiết diện là hình gì? b) Chứng minh rằng mặt phẳng phân chia khối hộp đã cho thành hai khối đa diện và bằng nhau. c) Tính tỉ số thể tích của khối đa diện và thể tích của khối tứ diện AA’BD.
Xem lời giải