Lý thuyết về một số hệ thức về cạnh và góc trong tam giác vuông

Trong một tam giác vuông nếu cho trước hai yếu tố (trong đó có ít nhất một yếu tố về cạnh và không kể góc vuông) thì ta sẽ tìm được các yếu tố còn lại.

Lý thuyết về một số hệ thức về cạnh và góc trong tam giác vuông

1. Các hệ thức

Trong một tam giác vuông, mỗi cạnh góc vuông bằng:

a) Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

b) Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề.

 

\(b=\)\(a\cdot \sin B\)\(=a\cdot \cos C\);

\(b=c\cdot \tan B=c\cdot \cot C\);

\(c=a\cdot \sin C=a\cdot \cos B\);

\(c=b\cdot \tan C=b\cdot \cot B\).

2. Chú ý

Trong một tam giác vuông nếu cho trước hai yếu tố (trong đó có ít nhất một yếu tố về cạnh và không kể góc vuông) thì ta sẽ tìm được các yếu tố còn lại.

Loigiaihay.com

?>
Gửi bài tập - Có ngay lời giải