Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai

Đưa thừa số ra ngoài dấu căn

Quảng cáo

1. Đưa thừa số ra ngoài dấu căn

Với hai biểu thức A, B mà \(B\geq 0\), ta có \(\sqrt{A^{2}B}=\left | A \right |\sqrt{B;}\) tức là:

Nếu \(A\geq 0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=A\sqrt{B}\);

Nếu \(A<0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=-A\sqrt{B}\).

Ví dụ: Với \(x\ge 0\) ta có: \(\sqrt {48{x^2}}  = \sqrt {3.16{x^2}}  \)\(= \sqrt {{{\left( {4x} \right)}^2}.3}  = 4x\sqrt 3 \) 

2. Đưa thừa số vào trong dấu căn

Với \(A\geq 0\) và \(B\geq 0\) thì \(A\sqrt{B}=\sqrt{A^{2}B};\)

Với \(A<0\) và \(B\geq 0\) thì \(A\sqrt{B}=-\sqrt{A^{2}B}.\)

Ví dụ: Với \(x<0\) ta có: \(x\sqrt 3  =  - \sqrt {3{x^2}} \)

3. Khử mẫu của biểu thức lấy căn

Với hai biểu thức A, B mà \(AB\geq 0\) và \(B\neq 0\), ta có:

\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A\cdot B}}{\left | B \right |}.\)

Ví dụ: Với \(x\ne 0\) ta có: \(\sqrt {\dfrac{{11}}{x}}  = \dfrac{{\sqrt {11.x} }}{{\left| x \right|}}\)

4. Trục căn thức ở mẫu 

Với hai biểu thức A, B mà \(B>0,\) ta có

\(\dfrac{A}{\sqrt{B}}=\dfrac{A\sqrt{B}}{B}.\)

Với các biểu thức A, B, C mà \(A\geq 0\) và \(A\neq B^{2}\), ta có

\(\dfrac{C}{\sqrt{A}\pm B }=\dfrac{C(\sqrt{A}\mp B)}{A-B^{2}}.\) 

Với các biểu thức A, B, C mà \(A\geq 0\), \(B\geq 0\) và \(A\neq B\), ta có:

\(\dfrac{C}{\sqrt{A}\pm \sqrt{B}}=\dfrac{C(\sqrt{A}\mp \sqrt{B})}{A-B}.\) 

Ví dụ: Trục căn thức ở mẫu của biểu thức \(\dfrac{3}{{\sqrt x  + 2}}\) với \(x\ge 0\) 

Ta có: 

\(\begin{array}{l}
\dfrac{3}{{\sqrt x + 2}} = \dfrac{{3\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3\sqrt x - 6}}{{{{\left( {\sqrt x } \right)}^2} - 4}}\\
= \dfrac{{3\sqrt x - 6}}{{x - 4}}
\end{array}\)

Loigiaihay.com

Quảng cáo

Gửi bài