Lý thuyết Giới hạn của dãy số - SGK Toán 11 Cùng khám phá

I. Giới hạn hữu hạn của dãy số

Quảng cáo

I. Giới hạn hữu hạn của dãy số

1. Dãy số có giới hạn bằng 0

- Dãy số \(\left( {{u_n}} \right)\)có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.

 Kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 0\) hay \({u_n} \to 0\) khi  \(n \to  + \infty \) hay \(\lim {u_n} = 0\).

* Chú ý:

+ \(\lim \frac{1}{{{n^k}}} = 0,k \in \mathbb{Z}.\)

+ Nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)

2. Dãy số có giới hạn hữu hạn

Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to  + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) hay \({u_n} \to a\)khi  \(n \to  + \infty \).

* Chú ý:  Nếu \({u_n} = c\) (c là hằng số) thì \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = c\)

3. Định lí về giới hạn hữu hạn

Cho \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to  + \infty } {v_n} = b\) và c là hằng số thì

  • \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n} \pm {v_n}) = a \pm b\)
  • \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) = a.b\)
  • \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) = \frac{a}{b}\left( {b \ne 0} \right)\)
  • Nếu \({u_n} \ge 0\) thì với mọi n và \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) thì \(a \ge 0\) và \(\mathop {\lim }\limits_{n \to  + \infty } \sqrt {{u_n}}  = \sqrt a \)

4. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là:

\(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\)

II. Giới hạn vô cực

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \)khi \(n \to  + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \) hay \({u_n} \to  + \infty \) khi \(n \to  + \infty \).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \)khi \(n \to  + \infty \) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - {u_n}} \right) =  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  - \infty \) hay \({u_n} \to  - \infty \) khi \(n \to  + \infty \).

*Nhận xét:

\(\begin{array}{l}a,\lim {n^k} =  + \infty ,k \in \mathbb{N},k \ge 1.\\b,\lim {q^n} =  + \infty ;q \in \mathbb{R},q > 1.\end{array}\)

* Chú ý:

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a\)và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} =  + \infty \)(hoặc\(\mathop {\lim }\limits_{x \to  + \infty } {v_n} =  - \infty \))thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) = 0\).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = 0,{v_n} > 0\)thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) =  + \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = 0,{v_n} < 0\)thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) =  - \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \)thì \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) =  + \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = a < 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \)thì \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) =  - \infty \)

 

 

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close