Phần câu hỏi bài 5 trang 54 Vở bài tập toán 8 tập 2Giải phần câu hỏi bài 5 trang 54 VBT toán 8 tập 2. Khoanh tròn vào các khẳng định đúng. Bỏ dấu giá trị tuyệt đối của biểu thức |-4x| ta được biểu thức ... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 11. Khoanh tròn vào các khẳng định đúng. Bỏ dấu giá trị tuyệt đối của biểu thức \(|-4x|\) ta được biểu thức: (A) \(-4x\) với \(x \ge 0\) và \(4x\) với \(x<0\) (B) \(4x\) với \(x \le 0\) và \(-4x\) với \(x>0\) (C) \(-4x\) với \(x \le 0\) và \(4x\) với \(x>0\) (D) \(-4x\) với \(x<0\) và \(4x\) với \(x>0\). Phương pháp giải: Phương pháp: Sử dụng: Giá trị tuyệt đối của số \(a\), kí hiệu là \(|a|\) được định nghĩa như sau: \(|a| = a\) khi \(a ≥ 0\) \(|a| = -a\) khi \(a < 0\) Lời giải chi tiết: Lời giải: \(| - 4x| = - 4x\) với \(- 4x \ge 0 \Leftrightarrow x \le 0\). \(| - 4x| = 4x\) với \(- 4x < 0 \Leftrightarrow x > 0\). Chọn C. Câu 12. Khoanh tròn vào các khẳng định đúng. Bỏ dấu giá trị tuyệt đối của biểu thức \(|x-3|\) ta được biểu thức: (A) \(x-3\) với \(x\ge 0\) và \(3-x\) với \(x<0\) (B) \(x-3\) với \(x\ge 3\) và \(x+3\) với \(x<3\) (C) \(x-3\) với \(x>3\) và \(3-x\) với \(x<3\) (D) \(x-3\) với \(x\ge3\) và \(3-x\) với \(x<3\). Phương pháp giải: Phương pháp: Sử dụng: Giá trị tuyệt đối của số \(a\), kí hiệu là \(|a|\) được định nghĩa như sau: \(|a| = a\) khi \(a ≥ 0\) \(|a| = -a\) khi \(a < 0\) Lời giải chi tiết: Lời giải: \(|x-3|=x-3\) với \(x - 3 \ge 0 \Leftrightarrow x \ge 3\). \(|x-3|= - \left( {x - 3} \right) = 3 - x\) với \(x-3 Chọn D. Loigiaihay.com
Quảng cáo
|