Giải mục 3 trang 8 Chuyên đề học tập Toán 12 - Cánh diềuMột hộp đựng 10 quả cầu có cùng kích thước và màu sắc nhưng khác nhau về khối lượng: 5 quả cầu nặng 1kg, 2 quả cầu nặng 2kg, 3 quả cầu nặng 3kg. Chọn ngẫu nhiên một quả cầu từ chiếc hộp. a) Tính khối lượng trung bình của 10 quả cầu trên. b) Gọi (X) (kg) là khối lượng của quả cầu được chọn. Tính xác suất ({p_1} = P(X = 1),{p_2} = P(X = 2),{p_3} = P(X = 3)) và giá trị của biểu thức ({rm{E(X)}} = 1{p_1} + 2{p_2} + 3{p_3}.) c) So sánh khối lượng trung bình của 10 quả cầu và giá trị của E( Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 3 Trả lời câu hỏi Hoạt động 3 trang 8 Chuyên đề học tập Toán 12 Cánh diều Một hộp đựng 10 quả cầu có cùng kích thước và màu sắc nhưng khác nhau về khối lượng: 5 quả cầu nặng 1kg, 2 quả cầu nặng 2kg, 3 quả cầu nặng 3kg. Chọn ngẫu nhiên một quả cầu từ chiếc hộp. a) Tính khối lượng trung bình của 10 quả cầu trên. b) Gọi \(X\) (kg) là khối lượng của quả cầu được chọn. Tính xác suất \({p_1} = P(X = 1),{p_2} = P(X = 2),{p_3} = P(X = 3)\) và giá trị của biểu thức \({\rm{E(X)}} = 1{p_1} + 2{p_2} + 3{p_3}.\) c) So sánh khối lượng trung bình của 10 quả cầu và giá trị của E(X). Phương pháp giải: a) CT khối lượng trung bình: \(\frac{{{n_1}.{m_1} + {n_2}.{m_2} + {n_3}.{m_3}}}{{10}}\) b) Tìm không gian mẫu \(n(\Omega )\). Sau đó tính \({p_1} = P(X = 1);{p_2} = P(X = 2);{p_3} = P(X = 3)\) Lời giải chi tiết: a) Khối lượng trung bình của 10 quả cầu là \(\frac{{5.1 + 2.2 + 3.3}}{{10}} = 1,8(kg)\) b) Có \(n(\Omega ) = C_{10}^1 = 10\) \(\begin{array}{l}{p_1} = P(X = 1) = \frac{{C_5^1}}{{10}} = \frac{1}{2};\\{p_2} = P(X = 2) = \frac{{C_2^1}}{{10}} = \frac{1}{5};\\{p_3} = P(X = 3) = \frac{{C_3^1}}{{10}} = \frac{3}{{10}}\end{array}\) Có \({\rm{E(X)}} = 1{p_1} + 2{p_2} + 3{p_3} = 1.\frac{1}{2} + 2.\frac{1}{5} + 3.\frac{3}{{10}} = 1,8\) c) Ta thấy khối lượng trung bình của 10 quả cầu bằng giá trị của \({\rm{E(X)}}{\rm{.}}\)
Quảng cáo
|