Giải mục 2 trang 12, 13 SGK Toán 8 tập 1 - Cánh diềuCho hai đa thức: (P = {x^2} + 2{rm{x}}y + {y^2}) và (Q = {x^2} - 2{rm{x}}y + {y^2}) a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau. c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm . Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 2 Video hướng dẫn giải Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\) a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đồng dạng với nhau. c) Tính hiệu P – Q bằng cách thực hiện phép tính trong từng nhóm . Phương pháp giải: - Viết hiệu P – Q theo hàng ngang - Bỏ dấu ngoặc rồi đổi dấu các hạng tử, nhóm các đơn thức đồng dạng và thực hiện phép tính. Lời giải chi tiết: a) \(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\) b) \(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\) c) \(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\) LT 2 Video hướng dẫn giải Với ba đa thức: \(A = {x^2} - 2{\rm{x}}y + {y^2};B = 2{{\rm{x}}^2} - {y^2};C = {x^2} - 3{\rm{x}}y\)(ở trong ví dụ 3). Hãy tính: a) B – C b) (B – C) + A Phương pháp giải: Thực hiện theo quy tắc cộng, trừ đa thức nhiều biến. Lời giải chi tiết: a) Ta có: \(\begin{array}{l}B - C = \left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right)\\B - C = 2{{\rm{x}}^2} - {y^2} - {x^2} + 3{\rm{x}}y\\B - C = \left( {2{{\rm{x}}^2} - {x^2}} \right) + 3{\rm{x}}y - {y^2} = {x^2} + 3{\rm{x}}y - {y^2}\end{array}\) b) Ta có: \(\begin{array}{l}(B - C) + A = {\rm{[}}\left( {2{{\rm{x}}^2} - {y^2}} \right) - \left( {{x^2} - 3{\rm{x}}y} \right){\rm{] + (}}{{\rm{x}}^2} - 2{\rm{x}}y + {y^2})\\(B - C) + A = {x^2} + 3{\rm{x}}y - {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\(B - C) + A = \left( {{x^2} + {x^2}} \right) + \left( {3{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\(B - C) + A = 2{{\rm{x}}^2} + xy\end{array}\)
Quảng cáo
|