Giải câu hỏi trắc nghiệm trang 91, 92, 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1\(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng A. \(\frac{3}{2}\). B. \( - 2\). C. 3. D. \( - 3\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 1 \(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng A. \(\frac{3}{2}\). B. \( - 2\). C. 3. D. \( - 3\). Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\). + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) Lời giải chi tiết: \(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}} = \lim \frac{{3 + \frac{2}{n}}}{{\frac{2}{{{n^2}}} - 1}} = \frac{{3 + \lim \frac{2}{n}}}{{\lim \frac{2}{{{n^2}}} - 1}} = \frac{3}{{ - 1}} = - 3\) Chọn D Câu 2 \(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}}\) bằng A. \(\frac{1}{2}\). B. 1. C. 2. D. \( + \infty \). Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \) + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) Lời giải chi tiết: \(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}} = \lim \frac{{\sqrt {4 + \frac{4}{n} + \frac{1}{{{n^2}}}} }}{{4 + \frac{1}{n}}} = \frac{{\sqrt {4 + \lim \frac{4}{n} + \lim \frac{1}{{{n^2}}}} }}{{4 + \lim \frac{1}{n}}} = \frac{{\sqrt 4 }}{4} = \frac{1}{2}\) Chọn A. Câu 3
\(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng A. \(\frac{2}{3}\). B. 1. C. \(\frac{1}{4}\). D. 2. \(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng A. \(\frac{2}{3}\). B. 1. C. \(\frac{1}{4}\). D. 2. Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \) + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) Lời giải chi tiết: \(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}} = \lim \frac{{2 + \frac{1}{n}}}{{\sqrt {9 + \frac{1}{{{n^2}}}} - 1}} = \frac{{2 + \lim \frac{1}{n}}}{{\sqrt {9 + \lim \frac{1}{{{n^2}}}} - 1}} = \frac{2}{{\sqrt 9 - 1}} = 1\) Chọn B Câu 4 Cho hai dãy số \(\left( {{u_n}} \right)\) và \[\left( {{v_n}} \right)\] thỏa mãn \(\lim {u_n} = 4,\lim \left( {{v_n} - 3} \right) = 0\). \(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right]\) bằng A. 7. B. 12. C. 4. D. 28. Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\). + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim c = c\) (c là hằng số) Lời giải chi tiết: \(\lim \left( {{v_n} - 3} \right) = 0 \Rightarrow \lim {v_n} - 3 = 0 \Rightarrow \lim {v_n} = 3\) \(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right] = \lim \left( {u_n^2 - {u_n}{v_n}} \right) = \lim u_n^2 - \lim \left( {{u_n}{v_n}} \right) = {4^2} - 3.4 = 4\) Chọn C Câu 5 \(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}}\) bằng A. \(\frac{1}{2}\). B. 1. C. 4. D. 0. Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\). + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) Lời giải chi tiết: \(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}} = \lim \frac{1}{{2 + {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{{2 + \lim {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{2}\) Chọn A Câu 6 \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}}\) bằng A. \(\frac{3}{2}\). B. \(\frac{1}{2}\). C. 1. D. \( - \frac{1}{2}\). Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)) + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số) Lời giải chi tiết: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{2\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{x + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\) Chọn A Câu 7 \(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}}\) bằng A. 0. B. \( + \infty \). C. 2. D. 8. Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\) + Nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \). + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số) Lời giải chi tiết: \(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{\left( {\sqrt {x + 3} - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{x - 1}}\) \( = \mathop {\lim }\limits_{x \to 1} 2\left( {\sqrt {x + 3} + 2} \right) = 2\left( {\sqrt {1 + 3} + 2} \right) = 8\) Chọn D Câu 8 Biết \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) với a và b là hai số thực. Giá trị của \(a + b\) bằng A. 1. B. 2. C. 4. D. 5. Phương pháp giải: Sử dụng kiến thức về giới hạn hữu hạn của hàm số để tìm a, b. Lời giải chi tiết: Do \(\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\) nên để tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) thì \(\mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 3x + a} \right) = 0\) hay \(1 - 3 + a = 0 \Rightarrow a = 2\) Do đó, \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) = 1 - 2 = - 1\) nên \(b = - 1\). Suy ra: \(a + b = 2 - 1 = 1\) Chọn A Câu 9 Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}}\). Đặt \(a = \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\) và \(b = \mathop {\lim }\limits_{x \to 3} f\left( x \right)\). Giá trị của \(a - 2b\) bằng A. 0. B. 9. C. \( - 3\). D. \( - 9\). Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ + } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)) Cho \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ - } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)) + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to x_0^ + } c = c,\mathop {\lim }\limits_{x \to x_0^ - } c = c\) (với c là hằng số) Lời giải chi tiết: \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{x\left( {x - 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} x = 3\) nên \(a = 3\) \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{x\left( {x - 3} \right)}}{{ - x + 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) = - 3\) nên \(b = - 3\) Do đó, \(a - 2b = 3 - 2\left( { - 3} \right) = 9\) Chọn B Câu 10 Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2,\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4\). Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}}\) bằng A. \( - 1\). B. 0. C. \(\frac{1}{2}\). D. \( - \frac{1}{2}\). Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)). + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số) Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{{4 - 2}}{2} = 1\) Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right]}} = \frac{{2 - 2.1}}{4} = 0\) Chọn B Câu 11 Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\). Giá trị của a là A. \(\frac{3}{4}\). B. 6. C. \(\frac{3}{2}\). D. 3. Phương pháp giải: + Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) với \(M \ne 0\), nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {f\left( x \right)} = \sqrt L \). + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số) Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2a}}{{\sqrt {1 + \frac{a}{x}} + 1}} = \frac{{2a}}{2} = a\) Mà \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\) nên \(a = 3\) Chọn D Câu 12 \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{{1 - 3x}}{{x + 2}}\) bằng A. \( + \infty \). B. \( - \infty \). C. \( - 3\). D. \(\frac{7}{4}\). Phương pháp giải: Sử dụng kiến thức về giới hạn một bên của hàm số để tính: Nếu \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L > 0\) và \(\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = - \infty \) thì \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right).g\left( x \right)} \right] = - \infty \). Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{1}{{x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to - {2^ - }} \left( {1 - 3x} \right) = 1 - 3.\left( { - 2} \right) = 7 > 0\) Do đó, \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{1 - 3x}}{{x + 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\left( {1 - 3x} \right)\frac{1}{{x + 2}}} \right] = - \infty \) Chọn B Câu 13 Biết rằng hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2 - \sqrt {x + 1} }}{{x - 3}}\;\;khi\;x \ne 3\\\;\;\;\;\;\;\;a\;\;\;\;\;\;\;\;\,khi\;x = 3\end{array} \right.\) liên tục tại điểm \(x = 3\). Giá trị của a bằng A. \( - \frac{1}{4}\). B. \(\frac{1}{4}\). C. \( - 2\). D. 3. Phương pháp giải: Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\). Lời giải chi tiết: Hàm số f(x) có tập xác định \(D = \left[ { - 1;3} \right) \cup \left( {3; + \infty } \right)\) chứa điểm 3. Ta có: \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2 - \sqrt {x + 1} } \right)\left( {2 + \sqrt {x + 1} } \right)}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}}\) \( = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{2 + \sqrt {x + 1} }} = \frac{{ - 1}}{{2 + \sqrt {3 + 1} }} = \frac{{ - 1}}{4}\) Để f(x) liên tục tại \(x = 3\) thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Rightarrow a = \frac{{ - 1}}{4}\) Chọn A Câu 14 Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\tan x\;\;\;\;\;\;\,khi\;0 < x \le \frac{\pi }{4}\\k - \cot x\;\,khi\;\frac{\pi }{4} < x \le \frac{\pi }{2}\end{array} \right.\) liên tục tại trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\). Giá trị của k bằng A. 0. B. 1. C. 2. D. \(\frac{\pi }{2}\). Phương pháp giải: + Sử dung kiến thức về hàm số liên tục trên một đoạn để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên đoạn \(\left[ {a;b} \right]\). Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) nếu f(x) liên tục trên khoảng (a; b) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\). + Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\). Lời giải chi tiết: Để hàm số f(x) liên tục trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) thì hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\), \(x = 0\) và \(x = \frac{\pi }{2}\). Hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{4}} \right)\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} \left( {\tan x} \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} \left( {k - \cot x} \right) = \tan \frac{\pi }{4}\) \( \Leftrightarrow \tan \frac{\pi }{4} = k - \cot \frac{\pi }{4} \Leftrightarrow k - 1 = 1 \Leftrightarrow k = 2\) Hàm số f(x) liên tục tại \(x = 0\) khi \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \tan 0 = \tan 0\) (luôn đúng) Hàm số f(x) liên tục tại \(x = \frac{\pi }{2}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} \left( {k - \cot \frac{\pi }{2}} \right) = k - \cot \frac{\pi }{2}\) \( \Leftrightarrow k - \cot \frac{\pi }{2} = k - \cot \frac{\pi }{2}\) (luôn đúng) Vậy \(k = 2\). Chọn C Câu 15 Biết rằng phương trình \({x^3} - 2x - 3 = 0\) chỉ có một nghiệm. Phương trình này có nghiệm trong khoảng nào sau đây? A. \(\left( { - 1;0} \right)\). B. \(\left( {0;1} \right)\). C. \(\left( {1;2} \right)\). D. \(\left( {2;3} \right)\). Phương pháp giải: Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\). Lời giải chi tiết: Xét hàm số \(f\left( x \right) = {x^3} - 2x - 3\), f(x) liên tục trên \(\mathbb{R}\). Ta có: \(f\left( 1 \right) = {1^3} - 2.1 - 3 = 1 - 2 - 3 = - 4\), \(f\left( 2 \right) = {2^3} - 2.2 - 3 = 8 - 4 - 3 = 1\) Vì \(f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nghiệm một nghiệm trong khoảng \(\left( {1;2} \right)\). Chọn C
Quảng cáo
|