Giải bài 9.61 trang 68 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0},\widehat N = {40^0}\). Hãy tính số đo các góc còn lại của hai tam giác ABC và MNP.

Quảng cáo

Đề bài

Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0},\widehat N = {40^0}\). Hãy tính số đo các góc còn lại của hai tam giác ABC và MNP.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ:

+ Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}};\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C\).

+ Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A'B'C'\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = k\) được gọi là tỉ số đồng dạng.

Lời giải chi tiết

Vì $\Delta ABC\backsim \Delta MNP$ nên \(\widehat A = \widehat M = {60^0},\widehat B = \widehat N = {40^0},\widehat C = \widehat P\)

Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = {180^0}\) nên \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {60^0} - {40^0} = {80^0}\)

Suy ra \(\widehat C = \widehat P = {80^0}\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close