Giải bài 9.10 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCó ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ. Quảng cáo
Đề bài Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ. Phương pháp giải - Xem chi tiết Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\). Lời giải chi tiết Ta có \(\Omega = \left\{ {\left( {a,b,c} \right)} \right\}\), trong đó \(a \in \left\{ {1;2;3} \right\},b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( \Omega \right) = 3.4.6 = 72\). Gọi A là biến cố đang xét. Ta có \(A = \left\{ {\left( {a,b,c} \right),a + b + c = 2k + 1\left( {k \in \mathbb{Z}} \right)} \right\}\). Vậy \(A = \left\{ {\left( {2,b,c} \right)} \right\}\) trong đó \(b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( A \right) = 1.4.6 = 24\). Vậy \(P\left( A \right) = \frac{{24}}{{72}} = \frac{1}{3}\).
Quảng cáo
|