Giải bài 7.48 trang 37 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng là 500 nghìn đồng một giờ.

Quảng cáo

Đề bài

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng là 500 nghìn đồng một giờ.

a) Viết công thức của hàm số biểu thị tổng chi phí y (nghìn đồng) để thuê một chiếc thuyền du lịch trong x (giờ)

b) Vẽ đồ thị của hàm số thu được ở câu a để tìm tổng chi phí cho một lần thuê trong 3 giờ.

c) Giao điểm của đồ thị với trục tung biểu thị điều gì? 

Phương pháp giải - Xem chi tiết

a) Sử dụng khái niệm hàm số bậc nhất: Hàm số bậc nhất là hàm số cho bởi công thức \(y = ax + b,\) trong đó a, b là các số cho trước và \(a \ne 0\)

b) Sử dụng kiến thức về cách vẽ đồ thị hàm số bậc nhất \(y = ax + b\left( {a \ne 0} \right)\) để vẽ đồ thị:

+ Khi \(b = 0\) thì \(y = ax\). Đồ thị của hàm số \(y = ax\) là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; a)

+ Khi \(b \ne 0\), ta thường xác định hai điểm đặc biệt trên đồ thị là giao điểm của đồ thị với hai trục tọa độ như sau:

- Cho \(x = 0\) thì \(y = b\), ta được điểm P(0; b) thuộc trục tung Oy.

- Cho \(y = 0\) thì \(x = \frac{{ - b}}{a}\), ta được điểm \(Q\left( { - \frac{b}{a};0} \right)\) thuộc trục hoành Ox.

- Vẽ đường thẳng đi qua hai điểm P, Q ta được đồ thị của hàm số \(y = ax + b\)

Lời giải chi tiết

a) Phí sử dụng của thuyền du lịch trong x (giờ) là: 500x (nghìn đồng)

Hàm số biểu thị tổng chi phí y (nghìn đồng) để thuê một chiếc thuyền du lịch trong x (giờ) là: \(y = 1\;000 + 500x\) (nghìn đồng)

b) Đồ thị hàm số \(y = 1\;000 + 500x\) (nghìn đồng) đi qua điểm \(G\left( {0;\;1000} \right)\) và điểm \(Q\left( {1;\;1\;500} \right)\)

 

Nhìn vào đồ thị ta thấy, với \(x = 3\) thì \(y = 2\;500\) (nghìn đồng)

Vậy tổng chi phí cho một lần thuê trong 3 giờ là 2,5 triệu đồng.

c) Giao điểm của đồ thị hàm số với trục tung là (0; 1 000). Giao điểm này biểu thị chi phí thuê tiền cố định khi thuê thuyền (mặc dù không sử dụng giờ nào, tức là \(x = 0\) vẫn phải trả phí này, nếu đã đặt thuê).

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close