Giải bài 7.22 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Tính côsin góc giữa hai mặt phẳng sau

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Tính côsin góc giữa hai mặt phẳng sau:

a) Mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {ABCD} \right)\);

b) Mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SBC} \right)\).

Phương pháp giải - Xem chi tiết

Để tính góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) ta có thể thực hiện cách sau:

Tìm hai đường thẳng \(a,b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

Khi đó góc giữa hai đường thẳng \(a,b\) chính là góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

\(\left\{ \begin{array}{l}a \bot \left( \alpha  \right)\\b \bot \left( \beta  \right)\end{array} \right. \Rightarrow \widehat {\left( {\left( \alpha  \right),\left( \beta  \right)} \right)} = \widehat {\left( {a,b} \right)}\).

Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc

Áp dụng định lí côsin trong tam giác

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Khi đó \(SO \bot \left( {ABCD} \right)\) nên \(SO \bot AB\),

Kẻ \(OH \bot AB\) tại \(H\) thì \(AB \bot \left( {SOH} \right)\), suy ra \(AB \bot SH\).

 Do đó, góc giữa hai mặt phằng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(SH\) vả \(HO\), mà \(\left( {SH,HO} \right) = \widehat {SHO}\) nên góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\) bằng \(\widehat {SHO}\).

Ta tính được \({\rm{OH}} = \frac{a}{2},{\rm{SH}} = \frac{{a\sqrt 3 }}{2}\), suy ra \({\rm{cos}}\widehat {SHO} = \frac{{{\rm{OH}}}}{{{\rm{SH}}}} = \frac{{\sqrt 3 }}{3}\).

b) Gọi \(K\) là trung điểm của \(SB\). Khi đó \(AK \bot SB,CK \bot SB\), suy ra góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(AK\) và \(CK\).

Ta có \(AK = CK = \frac{{a\sqrt 3 }}{2},AC = a\sqrt 2 \).

Áp dụng định lí côsin trong tam giác ACK, ta có:

\({\rm{cos}}\widehat {AKC} = \frac{{A{K^2} + C{K^2} - A{C^2}}}{{2 \cdot AK \cdot CK}} = \frac{{ - 1}}{3}\), suy ra \({\rm{cos}}\left( {AK,CK} \right) =  - {\rm{cos}}\widehat {AKC} = \frac{1}{3}\).

Vậy côsin góc giữa hai mặt phả̉ng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) bằng \(\frac{1}{3}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close