Giải bài 7.13 trang 30 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho tứ diện \(ABCD\) có tất cả các cạnh bằng nhau và bằng \(a\).

Quảng cáo

Đề bài

Cho tứ diện \(ABCD\) có tất cả các cạnh bằng nhau và bằng \(a\). Tính côsin của góc giữa đường thẳng \(AB\) và mặt phẳng \(BCD\).

Phương pháp giải - Xem chi tiết

Phương pháp chung

Để xác định góc giữa đường thẳng \(a\) và mặt phẳng \(\left( \alpha  \right)\)ta thực hiện theo các bước sau:

-   Tìm giao điểm \(O = a \cap \left( \alpha  \right)\)

-    Dựng hình chiếu \(A'\) của một điểm \(A \in a\)  xuống \(\left( \alpha  \right)\)

-    Góc \(\widehat {AOA'} = \varphi \) chính là góc giữa đường thẳng \(a\) và \(\left( \alpha  \right)\).

Gợi ý phương pháp giải

Kẻ \(AH \bot \left( {BCD} \right)\) tại \(H\),

Xác định hình chiếu của \(AB\) trên \(\left( {BCD} \right)\) là \(BH\)

Tính góc \(\left( {AB,BH} \right) = \widehat {ABH}\) rồi kết luận

Lời giải chi tiết

Kẻ \(AH \bot \left( {BCD} \right)\) tại \(H\), ta có \(BH\) là hình chiếu vuông góc của \(AB\) trên mặt phẳng \(\left( {BCD} \right)\) nên góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\) bằng góc giữa hai đường thẳng \(AB\) và \(BH\), mà \(\left( {AB,BH} \right) = \widehat {ABH}\).

Vì \(AB = AC = AD\)  nên \(HB = HC = HD\), hay \(H\)  là tâm của tam giác\(BCD\), suy ra\(BH = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

Từ đó ta tính được:  \(\cos \widehat {ABH} = \frac{{BH}}{{AB}} = \frac{{\sqrt 3 }}{3}\).

 

Vậy côsin của góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\) bằng \(\frac{{\sqrt 3 }}{3}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close