Giải bài 6 trang 8 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Viết mỗi biểu thức sau dưới dạng một lũy thừa (left( {a > 0} right)):

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Viết mỗi biểu thức sau dưới dạng một lũy thừa \(\left( {a > 0} \right)\):

a) \(\sqrt[4]{{{2^{ - 3}}}}\);

b) \(\frac{1}{{\sqrt[5]{{{2^3}}}}}\);

c) \({\left( {\sqrt[5]{3}} \right)^4}\);

d) \(\sqrt {a\sqrt[3]{a}} \);

e) \(\sqrt[3]{a}.\sqrt[4]{{{a^3}}}:{\left( {\sqrt[6]{a}} \right)^5}\);

g) \({a^{\frac{1}{3}}}:{a^{ - \frac{3}{2}}}.{a^{ - \frac{2}{3}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phép tính lũy thừa để tính:

a, c, d) \({\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\), \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\), \({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\)

b) Với \(m,n \in \mathbb{Z},n > 0\) thì: \({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\), \({a^{ - n}} = \frac{1}{{{a^n}}}\) \(\left( {a \ne 0} \right)\).

e, g) \({\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\), \({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\), \({a^\alpha }.{a^\beta } = {a^{\alpha  + \beta }}\), \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

Lời giải chi tiết

a) \(\sqrt[4]{{{2^{ - 3}}}} = {\left( {\sqrt[4]{2}} \right)^{ - 3}} = {2^{\frac{{ - 3}}{4}}}\);

b) \(\frac{1}{{\sqrt[5]{{{2^3}}}}} = \frac{1}{{{2^{\frac{3}{5}}}}} = {2^{ - \frac{3}{5}}}\);

c) \({\left( {\sqrt[5]{3}} \right)^4} = {\left( {{3^{\frac{1}{5}}}} \right)^4} = {3^{\frac{4}{5}}}\);

d) \(\sqrt {a\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} \right)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} \right)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}\);

e) \(\sqrt[3]{a}.\sqrt[4]{{{a^3}}}:{\left( {\sqrt[6]{a}} \right)^5} = {a^{\frac{1}{3}}}.{a^{\frac{3}{4}}}:{a^{\frac{5}{6}}} = {a^{\frac{1}{3} + \frac{3}{4} - \frac{5}{6}}} = {a^{\frac{1}{4}}}\);

g) \({a^{\frac{1}{3}}}:{a^{ - \frac{3}{2}}}.{a^{ - \frac{2}{3}}} = {a^{\frac{1}{3} - \left( { - \frac{3}{2}} \right) + \left( {\frac{{ - 2}}{3}} \right)}} = {a^{\frac{7}{6}}}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close