Giải bài 5 trang 28 SGK Toán 8 tập 1 - Cánh diềuPhân tích mỗi đa thức sau thành nhân tử: Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Phân tích mỗi đa thức sau thành nhân tử: a) \({\left( {x + 2y} \right)^2} - {\left( {x - y} \right)^2}\) b) \({\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}\) c) \(9{x^2} - 3x + 2y - 4{y^2}\) d) \(4{x^2} - 4xy + 2x - y + {y^2}\) e) \({x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1 - {y^3}\) g) \({x^3} - 2{{\rm{x}}^2}y + x{y^2} - 4{\rm{x}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Vận dụng trực tiếp hằng đẳng thức hoặc vận dụng hằng đẳng thức để nhóm các hạng tử để phân tích đa thức thành nhân tử. Lời giải chi tiết a) \(\begin{array}{l}{\left( {x + 2y} \right)^2} - {\left( {x - y} \right)^2}\\ = \left( {x + 2y + x - y} \right)\left( {x + 2y - x + y} \right)\\ = \left( {2{\rm{x}} + y} \right).3y\end{array}\) b) \(\begin{array}{l}{\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}\\ = \left( {x + 1 + x - 1} \right)\left[ {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right]\\ = 2{\rm{x}}\left[ {{x^2} + 2{\rm{x}} + 1 - \left( {{x^2} - 1} \right) + {x^2} - 2{\rm{x}} + 1} \right]\\ = 2{\rm{x}}\left( {{x^2} + 2{\rm{x}} + 1 - {x^2} + 1 + {x^2} - 2{\rm{x}} + 1} \right)\\ = 2{\rm{x}}\left( {{x^2} + 3} \right)\end{array}\) c) \(\begin{array}{l}9{x^2} - 3x + 2y - 4{y^2}\\ = \left( {9{x^2} - 4{y^2}} \right) - \left( {3x - 2y} \right)\\ = \left( {3x - 2y} \right)\left( {3x + 2y} \right) - \left( {3x - 2y} \right)\\ = \left( {3x - 2y} \right)\left( {3x + 2y - 1} \right)\end{array}\) d) \(\begin{array}{l}4{x^2} - 4xy + 2x - y + {y^2}\\ = \left( {4{x^2} - 4xy + {y^2}} \right) + \left( {2x - y} \right)\\ = {\left( {2x - y} \right)^2} + \left( {2x - y} \right)\\ = \left( {2x - y} \right)\left( {2x - y + 1} \right)\end{array}\) e) \(\begin{array}{l}{x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1 - {y^3}\\ = \left( {{x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1} \right) - {y^3}\\ = {\left( {x + 1} \right)^3} - {y^3}\\ = \left( {x + 1 - y} \right)\left[ {{{\left( {x + 1} \right)}^2} + \left( {x + 1} \right)y + {y^2}} \right]\end{array}\) g) \(\begin{array}{l}{x^3} - 2{{\rm{x}}^2}y + x{y^2} - 4{\rm{x}}\\{\rm{ = }}\left( {{x^3} - 2{{\rm{x}}^2}y + x{y^2}} \right) - 4{\rm{x}}\\ = x\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right) - 4{\rm{x}}\\ = x{\left( {x - y} \right)^2} - 4{\rm{x}}\\ = x\left[ {{{\left( {x - y} \right)}^2} - {2^2}} \right]\\ = x\left( {x - y + 2} \right)\left( {x - y - 2} \right)\end{array}\)
Quảng cáo
|