Giải bài 2 trang 28 SGK Toán 8 tập 1 - Cánh diều

Thực hiện phép tính:

Quảng cáo

Đề bài

Thực hiện phép tính:

\(a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\)

\(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right)\)

\(c)\left( { - 5{{\rm{x}}^3}{y^3}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\)

\(d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức, chia đơn thức cho đơn thức, chia đa thức cho đơn thức đối với đa thức nhiều biên để thực hiện phép tính.

Lời giải chi tiết

\(\begin{array}{l}a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\\ = \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 6{\rm{a}}{b^2}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 3{\rm{a}}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( {9{b^3}} \right)\\ = 2{{\rm{a}}^3}{b^3} + {a^3}b - 3{\rm{a^2}}{b^4}\end{array}\)

\(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right) = {\left( {{a^2}} \right)^3} + {\left( {{b^2}} \right)^3} = {a^6} + {b^6}\)

\(\begin{array}{l}c)\left( { - 5{{\rm{x}}^3}{y^2}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\\ = \left( { - 5:\dfrac{{15}}{2}} \right).\left( {{x^3}:x} \right).\left( {{y^2}:{y^2}} \right).\left( {z:z} \right) = \dfrac{{ - 2}}{3}{x^2}\end{array}\)

\(\begin{array}{l}d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\\ = \left[ {\left( {8{{\rm{x}}^4}{y^2}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( { - 10{x^2}{y^4}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( {12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right]\\ =  - 4{{\rm{x}}^2} + 5{y^2} - 6{\rm{x}}{y^3}\end{array}\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close