Giải bài 4.36 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngTrong mặt phẳng tọa độ Oxy cho hai điểm A(1;1) và B(7;5). Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(A(1;1)\) và \(B(7;5).\) a) Tìm tọa độ của điểm \(C\) thuộc trục hoành sao cho \(C\) cách đều \(A\) và \(B.\) b) Tìm tọa độ của điểm \(D\) thuộc trục tung sao cho vectơ \(\overrightarrow {DA} + \overrightarrow {DB} \) có độ dài ngắn nhất. Phương pháp giải - Xem chi tiết - Tính các vectơ \(\overrightarrow {CA} \) và \(\overrightarrow {CB} \) - Giải phương trình \(\left| {\overrightarrow {CA} } \right| = \left| {\overrightarrow {CB} } \right|\) để tìm tọa độ điểm \(C\) - Gọi \(M\) là trung điểm của \(AB\) - Chứng minh \(\overrightarrow {DA} + \overrightarrow {DB} = 2\overrightarrow {DM} \) ngắn nhất Lời giải chi tiết a) Vì điểm \(C\) thuộc trục hoành nên tạo độ điểm \(C\) là: \(C(x;0)\) Ta có: \(\overrightarrow {CA} = (1 - x;1)\) và \(\overrightarrow {CB} = (7 - x;5)\) Để điểm \(C\) cách đều \(A\) và \(B\) \(\begin{array}{l} \Leftrightarrow \,\,AC = BC\\ \Leftrightarrow \,\,{\left( {1 - x} \right)^2} + 1 = {\left( {7 - x} \right)^2} + {5^2}\\ \Leftrightarrow \,\,{x^2} - 2x + 2 = {x^2} - 14x + 74\\ \Leftrightarrow \,\,12x = 72\\ \Leftrightarrow \,\,x = 6\end{array}\) Vậy \(C(6;0)\) b) Vì điểm \(D\) thuộc trục tung nên \(D(0;y)\) Gọi \(M\) là trung điểm của \(AB\) nên \(M(4;3).\) Ta có: \(\overrightarrow {DA} + \overrightarrow {DB} = 2\overrightarrow {DM} \) Để \(\overrightarrow {DA} + \overrightarrow {DB} \) có độ dài ngắn nhất \( \Leftrightarrow \) \(\overrightarrow {DM} \) có độ dài ngắn nhất \( \Leftrightarrow \) \(D\) là hình chiếu của \(M\) trên trục \(Oy\) \( \Leftrightarrow \) \(D(0;3)\)
Quảng cáo
|