Giải bài 41 trang 104 sách bài tập toán 11 - Cánh diềuCho hình chóp \(S.ABCD\) có \(ABCD\) là hình thoi Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thoi, \(\left( {SAC} \right) \bot \left( {ABCD} \right)\), \(\left( {SBD} \right) \bot \left( {ABCD} \right)\). Chứng minh rằng \(\left( {SAC} \right) \bot \left( {SBD} \right)\). Phương pháp giải - Xem chi tiết Để chứng minh 2 mặt phẳng vuông góc, ta cần chứng minh 1 đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia. Lời giải chi tiết Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Ta dễ dàng chứng minh được \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\). Vì \(\left( {SAC} \right) \bot \left( {ABCD} \right)\), \(\left( {SBD} \right) \bot \left( {ABCD} \right)\), \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\), ta suy ra \(SO \bot \left( {ABCD} \right)\). Điều này dẫn tới \(SO \bot AO\). Do \(ABCD\) là hình thoi, nên ta có \(AC \bot BD\), hay \(AO \bot BD\). Như vậy ta có \(SO \bot AO\), \(AO \bot BD\) nên \(AO \bot \left( {SBD} \right)\). Mà \(AO \subset \left( {SAC} \right)\) nên ta suy ra \(\left( {SAC} \right) \bot \left( {SBD} \right)\). Bài toán được chứng minh.
Quảng cáo
|