Giải bài 40 trang 60 sách bài tập toán 12 - Cánh diều

Cho hai đường thẳng ({Delta _1}:left{ begin{array}{l}x = 11 - 3{t_1}\y = - 5 + 4{t_1}\z = m{t_1}end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = - 4 + 5{t_2}\y = 2 + 3{t_2}\z = 2{t_2}end{array} right.), với (m) là tham số thực; ({t_1},{t_2}) là tham số của phương trình đường thẳng. Tìm (m) để hai đường thẳng đó vuông góc với nhau.

Quảng cáo

Đề bài

Cho hai đường thẳng Δ1:{x=113t1y=5+4t1z=mt1Δ2:{x=4+5t2y=2+3t2z=2t2, với m là tham số thực; t1,t2 là tham số của phương trình đường thẳng. Tìm m để hai đường thẳng đó vuông góc với nhau.

Phương pháp giải - Xem chi tiết

Hai đường thẳng Δ1Δ2 có vectơ chỉ phương lần lượt là u1=(a1;b1;c1),u2=(a2;b2;c2). Khi đó ta có: Δ1Δ2a1a2+b1b2+c1c2=0.

Lời giải chi tiết

Đường thẳng Δ1 có vectơ chỉ phương u1=(3;4;m).

Đường thẳng Δ2 có vectơ chỉ phương u2=(5;3;2).

Khi đó: Δ1Δ23.5+4.3+m.2=0m=32.

  • Giải bài 39 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa mặt phẳng (left( P right):x - y = 0) và mặt phẳng (left( {Oyz} right)).

  • Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ): (left( {{P_1}} right):5x + 12y - 13z + 14 = 0) và (left( {{P_2}} right):3x + 4y + 5z - 6 = 0).

  • Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) (Delta :left{ begin{array}{l}x = 18 - sqrt 3 t\y = 11\z = 5 + tend{array} right.) (với (t) là tham số) và (left( P right):x - sqrt 3 y - z - 3 = 0); b) (Delta :frac{{x - 8}}{2} = frac{{y - 7}}{{ - 3}} = frac{{z - 6}}{3}) và (left( P right):3x - 4y + 5z - 6 = 0).

  • Giải bài 36 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ nếu cần): a) ({Delta _1}:left{ begin{array}{l}x = 3 + 2{t_1}\y = - 2 + {t_1}\z = 0end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = 7 + {t_2}\y = - 3 - {t_2}\z = 2{t_2}end{array} right.) (({t_1},{t_2}) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = 3 + t\y = 5 - 2t\z = 7 - 2tend{array} right.) (với (t) là tham số) và ({

  • Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều

    Xác định vị trí tương đối của hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau: a) ({Delta _1}:frac{{x + 7}}{5} = frac{{y - 1}}{{ - 7}} = frac{{z + 2}}{{ - 2}}) và ({Delta _2}:left{ begin{array}{l}x = - 5 - 3t\y = - 10 - 4t\z = 3 + 7tend{array} right.) (với (t) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = - 2 + 5t\y = 1 - t\z = 3tend{array} right.) (với (t) là tham số) và ({Delta _2}:frac{{x + 2}}{4} = frac{{y - 1}}{5} = frac{{z

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close