Giải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).

+ Sử dụng kiến thức về góc phẳng nhị diện để tính: Góc phẳng nhị diện của góc nhị diện có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.

Lời giải chi tiết

Vẽ \(AH \bot BC\left( {H \in BC} \right)\).

Vì \(SA \bot \left( {ABC} \right) \) \( \Rightarrow SA \bot BC\), mà \(AH \bot BC\) nên \(BC \bot \left( {SHA} \right)\)

Do đó, \(SH \bot BC\) nên góc SHA là góc phẳng nhị diện \(\left[ {S,BC,A} \right]\)

Tam giác AHC vuông tại C nên \(AH \) \( = AC.\sin \widehat {ACB} \) \( = a.\sin {60^0} \) \( = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AH \) \( \Rightarrow \widehat {SAH} \) \( = {90^0}\), mà \(AH \) \( = SA\left( { = \frac{{a\sqrt 3 }}{2}} \right)\) nên tam giác SAH vuông cân tại A. Do đó, \(\widehat {SHA} \) \( = {45^0}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close