Giải bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diềuChứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: a) \(A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\); b) \(B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng các phép nhân, chia phân thức đại số để tính toán các biểu thức đại số về kết quả không chưa các biến. Lời giải chi tiết \(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\) Vậy A = 2 không phụ thuộc vào giá trị của các biến \(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\) Vậy B = 1 không phụ thuộc vào giá trị của biến x
Quảng cáo
|