Giải bài 4 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Cho hai điểm B, C cố định trên đường tròn \(\left( {O;{\rm{ }}R} \right)\) và một điểm A thay đổi trên đường tròn đó

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hai điểm B, C cố định trên đường tròn \(\left( {O;{\rm{ }}R} \right)\) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Phương pháp giải - Xem chi tiết

Ta đi chứng minh trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn \(\left( {O;{\rm{ }}R} \right)\) qua phép tịnh tiến theo \(\overrightarrow {B'C} \)

Lời giải chi tiết

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra \(\overrightarrow {B'C} \) là vectơ không đổi.

Ta có \(\widehat {BCB'} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra \(BC \bot B'C.\)

Mà \(AH \bot BC\)  (do H là trực tâm của ∆ABC).

Do đó \(AH//B'C\,\,\left( 1 \right)\)

Chứng minh tương tự, ta được \(AB'//CH{\rm{ }}\left( 2 \right)\)

Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra \(AH{\rm{ }} = {\rm{ }}B'C.\)

Mà \(AH{\rm{ }}//{\rm{ }}B'C\)  (chứng minh trên).

Vì vậy \(\overrightarrow {AH}  = \overrightarrow {B'C} \)

Do đó \(H = {T_{\overrightarrow {B'C} }}\left( A \right)\).

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua \({{\rm{T}}_{\overrightarrow {B'C} }}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close