Giải bài 38 trang 18 sách bài tập toán 12 - Cánh diều

Biết giá trị lớn nhất của hàm số (y = frac{{{{left( {ln x} right)}^2}}}{x}) trên đoạn (left[ {1;{e^3}} right]) là (M = frac{a}{{{e^b}}}), trong đó (a,b) là các số tự nhiên. Khi đó ({a^2} + 2{b^3}) bằng: A. 22. B. 24. C. 32. D. 135.

Quảng cáo

Đề bài

Biết giá trị lớn nhất của hàm số \(y = \frac{{{{\left( {\ln x} \right)}^2}}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{a}{{{e^b}}}\), trong đó \(a,b\) là các số tự nhiên. Khi đó \({a^2} + 2{b^3}\) bằng:

A. 22.                         

B. 24.                         

C. 32.                         

D. 135.

Phương pháp giải - Xem chi tiết

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

Ta có: \(y' = \frac{{{{\left[ {{{\left( {\ln x} \right)}^2}} \right]}^\prime }.x - {{\left( {\ln x} \right)}^2}.{{\left( x \right)}^\prime }}}{{{x^2}}} = \frac{{\frac{{2\ln {\rm{x}}}}{x}.x - {{\left( {\ln x} \right)}^2}}}{{{x^2}}} = \frac{{2\ln {\rm{x}} - {{\left( {\ln x} \right)}^2}}}{{{x^2}}}\)

Khi đó, trên đoạn \(\left[ {1;{e^3}} \right]\), \(y' = 0\) khi \(x = 1\) hoặc \(x = {e^2}\).

\(y\left( 1 \right) = 0;y\left( {{e^2}} \right) = \frac{4}{{{e^2}}};y\left( {{e^3}} \right) = \frac{9}{{{e^3}}}\).

Vậy \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{4}{{{e^2}}}\) tại \(x = {e^2}\).

Vậy \(a = 4,b = 2 \Leftrightarrow {a^2} + 2{b^3} = 32\).

Chọn C.

  • Giải bài 39 trang 18 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^2}.ln x). a) (y' = 2{rm{x}}.ln {rm{x}}). b) (y' = 0) khi (x = 1). c) (yleft( {frac{1}{{sqrt e }}} right) = - frac{1}{{2{rm{e}}}}). d) Giá trị nhỏ nhất của hàm số trên đoạn (left[ {frac{1}{e};e} right]) bằng ( - frac{1}{{2{rm{e}}}}).

  • Giải bài 40 trang 19 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Bác Lâm muốn gò một cái thùng bằng tôn dạng hình hộp chữ nhật không nắp có đáy là hình vuông và đựng đầy được 32 lít nước. Gọi độ dài cạnh đáy của thùng là (xleft( {dm} right)), chiều cao của thùng là (hleft( {dm} right)). a) Thể tích của thùng là (V = {x^.}^2.hleft( {d{m^3}} right)). b) Tổng diện tích xung quanh và diện tích đáy của thùng là: (S = 4xh + {x^2}left( {d{m^2}} right)). c) Đạo hàm của hàm số (Sle

  • Giải bài 41 trang 19 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của mỗi hàm số sau: a) \(y = - \frac{{{x^3}}}{3} - {x^2} + 3{\rm{x}} + 1\) trên khoảng \(\left( {0;3} \right)\); b) \(y = {x^4} - 8{x^2} + 10\) trên khoảng \(\left( { - \sqrt 7 ;\sqrt 7 } \right)\); c) \(y = \frac{{{x^2} - 1}}{{{x^2} + 1}}\); d) \(y = x + \frac{4}{{x - 1}}\) trên khoảng \(\left( { - \infty ;1} \right)\).

  • Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\); b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\); c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\); d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\); e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \); g) \(y = x\sqrt

  • Giải bài 43 trang 20 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = \sin 2{\rm{x}} - x\) trên đoạn \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\); b) \(y = x + {\cos ^2}x\) trên đoạn \(\left[ {0;\frac{\pi }{4}} \right]\);

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close