Bài 35 trang 78 Vở bài tập toán 8 tập 1Giải bài 35 trang 78 VBT toán 8 tập 1. Tìm biểu thức Q, biết rằng: (x^2+2x)/(x-1).Q = (x^2-4)/(x^2-x) Quảng cáo
Đề bài Tìm biểu thức \(Q\), biết rằng: \( \dfrac{{{x^2} + 2x}}{{x - 1}}.Q = \dfrac{{{x^2} - 4}}{{{x^2} - x}}\) Phương pháp giải - Xem chi tiết Áp dụng: - Thừa số chưa biết \(=\) Tích : thừa số đã biết. - Quy tắc chia hai phân thức: \( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\). Lời giải chi tiết Vì \( \dfrac{{{x^2} + 2x}}{{x - 1}}: \dfrac{{{x^2} + 2x}}{{x - 1}}=1\) nên chia cả hai vế của đẳng thức cho phân thức \( \dfrac{{{x^2} + 2x}}{{x - 1}}\) ta tìm được phân thức \(Q\). \( Q = \dfrac{x^{2}-4}{x^{2}-x} : \dfrac{x^{2}+2x}{x-1}\) \(= \dfrac{x^{2}-4}{x^{2}-x}. \dfrac{x-1}{x^{2}+2x}\) \( =\dfrac{(x-2)(x+2)}{x(x-1)}.\dfrac{x-1}{x(x+2)}\) \(=\dfrac{x-2}{x^{2}}\) Loigiaihay.com
Quảng cáo
|