Giải bài 3.43 trang 90 SGK Toán 8 - Cùng khám phá

Cho

Quảng cáo

Đề bài

Cho \(ABCD\) là hình bình hành có góc \(C\) là góc nhọn. Trên tia đối của tia \(DC\) lấy điểm \(E\) sao cho \(AD = AE\) ( \(E\) khác \(D\)). Chứng minh rằng \(ABCE\) là một hình thang cân.

Phương pháp giải - Xem chi tiết

Dựa vào tính chất hình bình hành và tính chất hình thang cân để chứng minh.

Lời giải chi tiết

Ta có:

Tam giác \(ABCD\) là hình bình hành

→   \(AB//DC\)

Mà \(DE\) là cạnh đối của \(DC\)

→   \(AB//CE\)

→   Tứ giác \(ABCE\) là hình thang

Lại có: \(\widehat {DCB} = \widehat {EDA}\) (do hai góc này ở vị trí đồng vị)

Mà \(\widehat {EDA} = \widehat {DEA}\) (do tam giác \(AED\) cân)

→   \(\widehat {DCB} = \widehat {DEA}\)

→   Tứ giác \(ABCE\) là hình thang cân vì có hai góc kề 1 đáy bằng nhau.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close