Giải bài 3.42 trang 90 SGK Toán 8 - Cùng khám phá

Trong Hình 3.95,

Quảng cáo

Đề bài

Trong Hình 3.95, \(ABCD\) là hình chữ nhật, \(E,F,G,H\) lần lượt là các điểm nằm trên các cạnh \(AB,BC,CD,AD\) và \(BE = DG = 1cm,BF = DH = 7cm,AE = AH = CF = CG = 5cm\).

a)     Tính độ dài các cạnh của tứ giác \(EFGH\).

b)    Chứng minh rằng \(HF\) vuông góc với \(EG\).

Phương pháp giải - Xem chi tiết

Dựa vào đinh lí Pythagore để tính các cạnh.

Lời giải chi tiết

a)     Độ dài của cạnh \(HE\) là: \(HE = \sqrt {{5^2} + {5^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(EF\) là: \(EF = \sqrt {{7^2} + {1^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(FG\) là: \(FG = \sqrt {{5^2} + {5^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(GH\) là: \(GH = \sqrt {{7^2} + {1^2}}  = 5\sqrt 2 \)

b)    Tứ giác \(EFGH\) có bốn cạnh \(EF = FG = GH = HE = 5\sqrt 2 \) và không có góc vuông.

→   Tứ giác \(EFGH\) là hình thoi

Mà \(HF\) và \(EG\) là hai đường chéo của hình thoi \(EFGH\)

→   \(HF \bot EG\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close