Giải bài 30 trang 76 sách bài tập toán 12 - Cánh diều

Cho hai vectơ (overrightarrow u = left( {3;4; - 5} right),overrightarrow v = left( {5; - 7;1} right)). Toạ độ của vectơ (overrightarrow u + overrightarrow v ) là: A. (left( {8;11; - 4} right)). B. (left( { - 2;11; - 6} right)). C. (left( {8; - 3; - 4} right)). D. (left( { - 8;3;4} right)).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Cho hai vectơ \(\overrightarrow u  = \left( {3;4; - 5} \right),\overrightarrow v  = \left( {5; - 7;1} \right)\). Toạ độ của vectơ \(\overrightarrow u  + \overrightarrow v \) là:

A. \(\left( {8;11; - 4} \right)\)

B. \(\left( { - 2;11; - 6} \right)\)

C. \(\left( {8; - 3; - 4} \right)\)

D. \(\left( { - 8;3;4} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng biểu thức toạ độ của phép cộng vectơ:

Nếu \(\overrightarrow u  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u  + \overrightarrow v  = \left( {{x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2}} \right)\).

Lời giải chi tiết

\(\overrightarrow u  + \overrightarrow v  = \left( {3 + 5;4 + \left( { - 7} \right);\left( { - 5} \right) + 1} \right) = \left( {8; - 3; - 4} \right)\).

Chọn C.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close