Giải bài 33 trang 76 sách bài tập toán 12 - Cánh diều

Độ dài của vectơ (overrightarrow u = left( {1;2;2} right)) là: A. 9. B. 3. C. 5. D. 4.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Độ dài của vectơ \(\overrightarrow u  = \left( {1;2;2} \right)\) là:

A. 9

B. 3

C. 5

D. 4

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính độ dài của vectơ \(\overrightarrow a  = \left( {x;y;z} \right)\): \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \).

Lời giải chi tiết

\(\left| {\overrightarrow u } \right| = \sqrt {{1^2} + {2^2} + {2^2}}  = 3\).

Chọn B.

  • Giải bài 34 trang 76 sách bài tập toán 12 - Cánh diều

    Tích vô hướng của hai vectơ (overrightarrow u = left( { - 2;1;3} right)) và (overrightarrow v = left( { - 3;2;5} right)) là: A. (sqrt {14} .sqrt {38} ). B. ( - sqrt {14} .sqrt {38} ). C. 23. D. ‒23.

  • Giải bài 35 trang 76 sách bài tập toán 12 - Cánh diều

    Khoảng cách giữa hai điểm (Ileft( {2; - 3; - 4} right)) và (Kleft( {7; - 3;8} right)) là: A. 169. B. 13. C. 26. D. 17.

  • Giải bài 36 trang 76 sách bài tập toán 12 - Cánh diều

    Cho hai điểm (Mleft( {5;2; - 3} right)) và (Nleft( {1; - 4;5} right)). Trung điểm của đoạn thẳng (MN) có toạ độ là: A. (left( {4;6; - 8} right)). B. (left( {2;3; - 4} right)). C. (left( {6; - 2;2} right)). D. (left( {3; - 1;1} right)).

  • Giải bài 37 trang 77 sách bài tập toán 12 - Cánh diều

    Cho tam giác (MNP) có (Mleft( {1; - 2;1} right),Nleft( { - 1; - 2;3} right)) và (Pleft( {3;1;2} right)). Trọng tâm của tam giác (MNP) có toạ độ là: A. (left( {1; - 1;2} right)). B. (left( {3; - 3;6} right)). C. (left( { - 1;1; - 2} right)). D. (left( { - 3;3; - 6} right)).

  • Giải bài 38 trang 77 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho hình hộp (ABCD.A'B'C'D') có (Aleft( {2; - 1;3} right),)(Bleft( {3;0;4} right),Dleft( {2; - 2;3} right),C'left( {5;4; - 3} right)). a) Toạ độ của vectơ (overrightarrow {AD} ) là (left( {0; - 1;0} right)). b) Gọi toạ độ của điểm (B') là (left( {{x_{B'}};{y_{B'}};{z_{B'}}} right)), ta có toạ độ của vectơ (overrightarrow {B'C'} ) là (left( {5 - {x_{B'}};

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close