Giải bài 26 trang 57 sách bài tập toán 12 - Cánh diềuĐường thẳng (Delta ) có phương trình tham số là: (left{ begin{array}{l}x = - 2 - 21t\y = 3 + 5t\z = - 6 - 19tend{array} right.). Phương trình chính tắc của (Delta ) là: A. (frac{{x + 21}}{{ - 2}} = frac{{y - 5}}{3} = frac{{z + 19}}{{ - 6}}). B. (frac{{x + 2}}{{ - 21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{ - 19}}). C. (frac{{x + 2}}{{21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{19}}). D. (frac{{x - 2}}{{ - 21}} = frac{{y + 3}}{5} = frac{{z - 6}}{{ - 19}}). Quảng cáo
Đề bài Đường thẳng \(\Delta \) có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 2 - 21t\\y = 3 + 5t\\z = - 6 - 19t\end{array} \right.\). Phương trình chính tắc của \(\Delta \) là: A. \(\frac{{x + 21}}{{ - 2}} = \frac{{y - 5}}{3} = \frac{{z + 19}}{{ - 6}}\). B. \(\frac{{x + 2}}{{ - 21}} = \frac{{y - 3}}{5} = \frac{{z + 6}}{{ - 19}}\). C. \(\frac{{x + 2}}{{21}} = \frac{{y - 3}}{5} = \frac{{z + 6}}{{19}}\). D. \(\frac{{x - 2}}{{ - 21}} = \frac{{y + 3}}{5} = \frac{{z - 6}}{{ - 19}}\). Phương pháp giải - Xem chi tiết Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\). Lời giải chi tiết Đường thẳng \(\Delta \) có phương trình trình tham số là: \(\left\{ \begin{array}{l}x = - 2 - 21t\\y = 3 + 5t\\z = - 6 - 19t\end{array} \right.\)đi qua điểm \(M\left( { - 2;3; - 6} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 21;5; - 19} \right)\). Phương trình chính tắc của \(\Delta \) là: \(\frac{{x + 2}}{{ - 21}} = \frac{{y - 3}}{5} = \frac{{z + 6}}{{ - 19}}\). Chọn B.
Quảng cáo
|