Giải Bài 25 trang 73 sách bài tập toán 7 - Cánh diềuCho ∆ABC = ∆XYZ, có (widehat {{A^{}}} + widehat Y = {120^o}) và (widehat {{A^{}}} - widehat Y = {40^o}) . Tính số đo mỗi góc của từng tam giác trên. Quảng cáo
Đề bài Cho ∆ABC = ∆XYZ, có \(\widehat {{A^{}}} + \widehat Y = {120^o}\) và \(\widehat {{A^{}}} - \widehat Y = {40^o}\) . Tính số đo mỗi góc của từng tam giác trên. Phương pháp giải - Xem chi tiết Sử dụng ∆ABC = ∆XYZ và điều kiện đề bài đưa ra để tín số đo các góc của hai tam giac Lời giải chi tiết Do \(\hat A + \hat Y = 120^\circ \) và \(\widehat {{A^{}}} - \widehat Y = {40^o}\) nên \(2\widehat {{A^{}}} = {120^o} + {40^o} = {160^o}\) Suy ra \(\widehat {{A^{}}} = {160^o}:2 = {80^o}\) Do đó \(\widehat Y = {120^o} - {80^o} = {40^o}\) Vì ∆ABC = ∆XYZ (giả thiết) Nên \(\widehat {{A^{}}} = \widehat X,\widehat B = \widehat Y,\widehat C = \widehat Z\) (các cặp góc tương ứng). Mà \(\widehat {{A^{}}} = {80^o},\widehat Y = {40^o}\) Suy ra \(\widehat X = {80^o},\widehat B = {40^o}\) Xét ∆ABC có: \(\widehat {{A^{}}} + \widehat B + \widehat C = {180^o}\) (tổng ba góc của một tam giác). Do đó \(\widehat C = {180^o} - \widehat {{A^{}}} - \widehat B = {180^o} - {80^o} - {40^o} = {60^o}\) Suy ra \(\widehat Z = {60^o}\) Vậy \(\widehat {{A^{}}} = {80^o},\widehat B = {40^o},\widehat C = {60^o},\widehat X = {80^o},\widehat Y = {40^o},\widehat Z = {60^o}\)
Quảng cáo
|