Giải bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Tìm đường đi ngắn nhất từ đỉnh S đến mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Tìm đường đi ngắn nhất từ đỉnh S đến  mỗi đỉnh khác của đồ thị có trọng số trên Hình 2.34.

Phương pháp giải - Xem chi tiết

Giải bài tán bằng thuật toán tìm đường đi ngắn nhất: Ta xuất phát từ đỉnh A và di chuyển theo các cạnh của đồ thị. Với mỗi đỉnh V, ta gắn một số I(V) là khoảng cách ngắn nhất để đi từ A đến V, gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, để tìm độ dài của đường đi ngắn nhất nối A với F, ta cần tìm I(F).

Lời giải chi tiết

Đầu tiên ta gắn nhãn đỉnh S là I(S) = 0 và gắn cho ba đỉnh kề với S là A, B và C các nhãn tạm thời là I(S) + 2, I(S) + 1 và I(S) + 7. Chọn số nhỏ nhất trong chúng và viết I(B) = 1. Đỉnh B bây giờ được gắn nhãn vĩnh viễn là 1.

Tiếp theo ta gắn nhãn cho các đỉnh kề với B là A, C, D, E và F các nhãn tạm thời là I(B) + 6 (hiện A có 2 nhãn tạm thời là 2 và 7), I(B) + 5 (hiện C có hai nhãn tạm thời là 7 và 6), I(B) + 12, I(B) + 15, I(B) + 9. Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại A, C, D, E, F) hiện nay là 2 (tại A), nên ta viết I(A) = 2. Điểm A được gắn nhãn vĩnh viễn là 2.

Bây giờ ta xét các đỉnh kề với A mà chưa được gắn nhãn vĩnh viễn là D và E. Ta gắn cho đỉnh D nhãn tạm thời I(A) + 5 (hiện D có hai nhãn tạm thời là 13 và 7), gắn cho đỉnh E nhãn tạm thời I(A) + 8 (hiện E có hai nhãn tạm thời là 16 và 10). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (tại D và E) là 7 (tại D), nên ta viết I(D) = 7. Đỉnh D được gắn nhãn vĩnh viễn là 7.

Ta xét đỉnh E (chưa được gắn nhãn vĩnh viễn) kề với D, ta gắn nhãn tạm thời I(D) + 2 (hiện E có ba nhãn tạm thời là 16, 10 và 9). Vậy đỉnh E sẽ được gắn nhãn vĩnh viễn là 9 hay I(E) = 9.

Tiếp tục ta xét các đỉnh kề với E mà chưa được gắn nhãn vĩnh viễn là C và F. Ta gắn cho đỉnh C nhãn tạm thời I(E) + 10 (hiện C có ba nhãn tạm thời là 7, 6 và 19), gắn cho F nhãn tạm thời I(E) + 6 (hiện F có hai nhãn tạm thời là 10 và 15). Nhãn tạm thời nhỏ nhất trong các nhãn đã gắn (ở C, F) hiện nay là 6 (tại C), nên ta viết I(C) = 6. Đỉnh C được gắn nhãn vĩnh viễn là 6.

Xét đỉnh kề với C là F, ta gắn cho F nhãn tạm thời I(C) + 14 (hiện F có ba nhãn tạm thời là 10, 15 và 20) nên I(F) = 10. Đỉnh F được gắn nhãn vĩnh viễn là 10.

 

Vậy, đường đi ngắn nhất từ đỉnh S đến đỉnh A là SA = 2.

Đường đi ngắn nhất từ đỉnh S đến đỉnh B là SB = 1.

Đường đi ngắn nhất từ đỉnh S đến đỉnh C có độ dài là I(C) = 6 và có đường đi là

S → B → C.

Đường đi ngắn nhất từ đỉnh S đến đỉnh D có độ dài là I(D) = 7 và đường đi là

S → A → D.

Đường đi ngắn nhất từ đỉnh S đến đỉnh E có độ dài là I(E) = 9 và đường đi là

S → A → D → E.

Đường đi ngắn nhất từ đỉnh S đến đỉnh F có độ dài là I(F) = 10 và đường đi là

S → B → F.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

close