Giải bài 2 trang 17 vở thực hành Toán 8Tìm tích của đơn thức với đa thức: Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Tìm tích của đơn thức với đa thức: a) \(\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\). b) \(\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\). Phương pháp giải - Xem chi tiết Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Lời giải chi tiết a) \(\begin{array}{l}\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\\ = \left( { - 0,5} \right)x{y^{2\;}}.2xy + \left( { - 0,5} \right)x{y^{2\;}}.\left( {-{x^2}\;} \right) + \left( { - 0,5} \right)x{y^{2\;}}.4y\\ = \left( { - 0,5.2} \right).\left( {x.x} \right).\left( {{y^2}.y} \right) + \left[ {\left( { - 0,5} \right).\left( { - 1} \right)} \right].\left( {x.{x^2}} \right).{y^2} + \left( { - 0,5.4} \right).x.\left( {{y^2}.y} \right)\\ = - {x^2}{y^3}\; + 0,5{x^3}{y^{2\;}}-\;2x{y^3}\end{array}\) b) \(\begin{array}{l}\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\\ = {x^3}y.6x{y^3} - \frac{1}{2}{x^2}.6x{y^3} + \frac{1}{3}xy.6x{y^3}\\ = 6.\left( {{x^3}.x} \right).\left( {y.{y^3}} \right) + \left( { - \frac{1}{2}.6} \right).\left( {{x^2}.x} \right).{y^3} + \left( {\frac{1}{3}.6} \right)\left( {x.x} \right)\left( {y.{y^3}} \right)\\ = 6{x^4}{y^4} - 3{x^3}{y^3} + 2{x^2}{y^4}\end{array}\)
Quảng cáo
|