Giải bài 1.27 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngGiải các phương trình sau: Quảng cáo
Đề bài Giải các phương trình sau: a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0\) b) \(2\sin 2x - \sin 4x = 0\) c) \({\cos ^6}x - {\sin ^6}x = 0\) d) \(\tan 2x\cot x = 1\) Phương pháp giải - Xem chi tiết a) Sử dụng cách giải phương trình \(\sin x = m\) (1) + Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm. + Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\). Khi đó, phương trình (1) tương đương với: \(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành: \(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2) + Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm. + Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\). Khi đó, phương trình (1) tương đương với: \(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành: \(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) c) Sử dụng cách giải phương trình \(\tan \,x = m\left( 3 \right)\) Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m. Luôn tồn tại duy nhất số \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\) Khi đó, phương trình (3) tương đương với: \(\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\) - Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành: \(\tan x = \tan {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\) - Nếu u, v là các biểu thức của x thì: \(\tan u = \tan v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\) Lời giải chi tiết a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\left( {VL} \right)\\3\cos 2x - 1 = 0\end{array} \right. \Leftrightarrow \cos 2x = \frac{1}{3}\) Gọi \(\alpha \) là góc thỏa mãn \(\cos \alpha = \frac{1}{3}.\) Do đó: \(\cos 2x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}2x = \alpha + k2\pi \\2x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{2} + k\pi \\x = - \frac{\alpha }{2} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) b) \(2\sin 2x - \sin 4x = 0 \Leftrightarrow 2\sin 2x - 2\sin 2x\cos 2x = 0 \Leftrightarrow 2\sin 2x\left( {1 - \cos 2x} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 - \cos 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{\pi }{4} + k\pi \end{array} \right. \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\) c) \({\cos ^6}x - {\sin ^6}x = 0 \Leftrightarrow {\left( {{{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} \Leftrightarrow {\cos ^2}x = {\sin ^2}x \Leftrightarrow {\cos ^2}x - {\sin ^2}x = 0\) \( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\) d) Điều kiện: \(\cos 2x \ne 0,\sin x \ne 0\) \(\tan 2x\cot x = 1 \Leftrightarrow \tan 2x = \tan x \Leftrightarrow 2x = x + k\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\) Ta thấy \(x = k\pi \) không thỏa mãn điều kiện. Vậy phương trình đã cho vô nghiệm
Quảng cáo
|