Giải bài 1.22 trang 18 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngTừ đồ thị hàm số \(y = \sin x\), hãy xác định các giá trị của x trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) sao cho: Quảng cáo
Đề bài Từ đồ thị hàm số \(y = \sin x\), hãy xác định các giá trị của x trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) sao cho: a) \(\sin x = 0\); b) \(\sin x > 0\). Phương pháp giải - Xem chi tiết Đối với phương trình \(\sin x = 0\) ta xét đồ thị hàm số \(y = \sin x\) cắt trục Ox tại bao nhiêu điểm thì có bấy nhiêu nghiệm. Đối với bất phương trình \(\sin x > 0\), ta tìm những khoảng của x trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) mà đồ thị \(y = \sin x\) nằm phía trên trục Ox. Lời giải chi tiết a) Trên đoạn \(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) đồ thị hàm số \(y = \sin x\) cắt trục Ox tại 4 điểm \(x = - \pi ,\,\,x = 0,\,\,x = \pi ,\,\,x = 2\pi \). Suy ra phương trình có 4 nghiệm trên đoạn \(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) là \(x = - \pi ,\,\,x = 0,\,\,x = \pi ,\,\,x = 2\pi \). b) Giải bất phương trình \(\sin x > 0\), ta tìm những khoảng của x trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) mà đồ thị \(y = \sin x\) nằm phía trên trục Ox. Từ đó, ta được tập nghiệm của bất phương trình \(\sin x > 0\) trên đoạn\(\left[ { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right]\) là \(S = \left( { - \frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right) \cup \left( {0;\pi } \right) \cup \left( {2\pi ;\frac{{5\pi }}{2}} \right)\).
Quảng cáo
|