Giải bài 12 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Tại một bể bơi có dạng hình tròn có đường kính \(AB = 10m\), một người xuất phát từ A bơi thẳng theo dây cung AC tạo với đường kính AB một góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\), rồi chạy bộ theo cung nhỏ CB đến điểm B (Hình 4). Gọi \(S\left( \alpha \right)\) là quãng đường người đó đã di chuyển. a) Viết công thức tính \(S\left( \alpha \right)\) theo \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\). b) Xét tính liên tục của hàm số \(y = S\left( \alpha \right)\)

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Tại một bể bơi có dạng hình tròn có đường kính \(AB = 10m\), một người xuất phát từ A bơi thẳng theo dây cung AC tạo với đường kính AB một góc \(\alpha \left( {0 < \alpha  < \frac{\pi }{2}} \right)\), rồi chạy bộ theo cung nhỏ CB đến điểm B (Hình 4). Gọi \(S\left( \alpha  \right)\) là quãng đường người đó đã di chuyển.

a) Viết công thức tính \(S\left( \alpha  \right)\) theo \(\alpha \left( {0 < \alpha  < \frac{\pi }{2}} \right)\).

b) Xét tính liên tục của hàm số \(y = S\left( \alpha  \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\).

c) Tính các giới hạn \(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right)\) và \(\mathop {\lim }\limits_{\alpha  \to {{\frac{\pi }{2}}^ + }} S\left( \alpha  \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\).

Lời giải chi tiết

a) Kí hiệu O là tâm hình tròn.

Do tam giác ABC vuông tại C nên \(AC = AB\cos \alpha  = 10\cos \alpha \left( m \right)\)

Ta có: \(\widehat {BOC} = 2\widehat {BAC} = 2\alpha \) nên độ dài cung BC là: \(l = OB.\widehat {BOC} = 5.2\alpha  = 10\alpha \left( m \right)\)

Quãng đường di chuyển của người đó là:

\(S\left( \alpha  \right) = AC + l = 10\cos \alpha  + 10\alpha  = 10\left( {\cos \alpha  + \alpha } \right)\)(m) \(\left( {0 < \alpha  < \frac{\pi }{2}} \right)\)

b) Do các hàm số \(y = \alpha ,y = \cos \alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha  \right)\) liên tục trên \(\left( {0;\frac{\pi }{2}} \right)\).

c) \(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {0^ + }} 10\left( {\alpha  + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha  \to {0^ + }} \alpha  + \mathop {\lim }\limits_{x \to {0^ + }} \cos \alpha } \right) = 10\left( {0 + 1} \right) = 10\)

\(\mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} 10\left( {\alpha  + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \alpha  + \mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \cos \alpha } \right) = 10\left( {\frac{\pi }{2} + 0} \right) = 5\pi \)

  • Giải bài 11 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Chứng minh rằng phương trình \({x^5} + 3{x^2} - 1 = 0\) trong mỗi khoảng \(\left( { - 2; - 1} \right);\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) đều có ít nhất một nghiệm.

  • Giải bài 10 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Cho điểm M thay đổi trên parabol \(y = {x^2}\); H là hình chiếu vuông góc của M trên trục hoành. Gọi x là hoành độ của điểm H. Tìm \(\mathop {\lim }\limits_{x \to + \infty } \left( {OM - MH} \right)\)

  • Giải bài 9 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Cho hàm số \(f\left( x \right) = \frac{{2x + 1}}{{x - 3}}\). a) Xét tính liên tục của hàm số đã cho. b) Tìm các giới hạn \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right);\mathop {\lim }\limits_{x \to - \infty } f\left( x \right);\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to 3} f\left( x \right)\).

  • Giải bài 8 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 9}}{{\left| {x + 3} \right|}}\;khi\;x \ne - 3\\\;\;\;\;a\;\;\;\;\,khi\;x = - 3\end{array} \right.\) a) Tìm \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right)\). b) Với giá trị nào của a thì hàm số liên tục tại \(x = - 3\).

  • Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Biết rằng, từ vị trí A, một mũi tên bay với tốc độ 10m/s hướng thẳng tới bia mục tiêu đặt ở vị trí B cách vị trí A một khoảng bằng 10m (Hình 2). Một nhà thông thái lập luận như sau: “Để đến được B, trước hết mũi tên phải đến trung điểm \({A_1}\) của AB. Tiếp theo, nó phải đến trung điểm \({A_2}\) của \({A_1}B\). Tiếp nữa, nó phải đi đến trung điểm \({A_3}\) của \({A_2}B\). Cứ tiếp tục như vậy, vì không bao giờ hết các trung điểm nên mũi tên không thể đến được mục tiêu ở B”.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close