Giải Bài 103 trang 98 sách bài tập toán 7 - Cánh diều

Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh:

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC; H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Chứng minh:

a) OC vuông góc với FH;

b) Tam giác OAI là tam giác cân;

c) Tam giác BAI là tam giác cân.

Phương pháp giải - Xem chi tiết

- Chứng minh: CO là đường trung trực của đoạn thẳng FH nên OC vuông góc với FH.

- Chứng minh: ∆OHA = ∆OFI suy ra OA = OI nên tam giác OAI cân tại O.

- Chứng minh: AB = BI nên tam giác BAI cân tại B.

Lời giải chi tiết

 

a) Xét DOHC và DOFC có:

\(\widehat {OHC} = \widehat {OFC}\left( { = 90^\circ } \right)\)

OC là cạnh chung,

\(\widehat {OCH} = \widehat {OCF}\) (do CO là tia phân giác của góc ACB)

Do đó ∆OHC = ∆OFC (cạnh huyền – góc nhọn)

suy ra CH = CF, OH = OF (các cặp cạnh tương ứng).

Do đó C và O cùng nằm trên đường trung trực của đoạn thẳng FH.

Hay CO là đường trung trực của đoạn thẳng FH.

Do đó OC ⊥ FH.

Vậy OC ⊥ FH.

b) Xét ∆OHA và ∆OFI có:

\(\widehat {OHA} = \widehat {OFI}\left( { = 90^\circ } \right)\)

OH = OF (chứng minh câu a),

AH = IF (giả thiết),

Do đó ∆OHA = ∆OFI (hai cạnh góc vuông)

Suy ra OA = OI (hai cạnh tương ứng)

Tam giác OAI có OA = OI nên ∆OAI cân tại O.

Vậy tam giác OAI là tam giác cân tại O.

c) • Kẻ OK ⊥ AB (K ∈ AB).

Xét ∆AOH và ∆AOK có

\(\widehat {OHA} = \widehat {OK{\rm{A}}}\left( { = 90^\circ } \right)\)

OA là cạnh chung,

\(\widehat {HAO} = \widehat {KAO}\) (do AO là tia phân giác của góc BAC)

Do đó ∆AOH = ∆AOK (cạnh huyền – góc nhọn)

Suy ra AH = AK (hai cạnh tương ứng).

•Xét tam giác ABC có O là giao điểm của hai tia phân giác của góc ACB và BAC.

Suy ra BO là tia phân giác của góc ABC.

Xét ∆BOK và ∆BOF có

\(\widehat {OKB} = \widehat {OFB}\left( { = 90^\circ } \right)\)

OB là cạnh chung,

\(\widehat {KBO} = \widehat {FBO}\) (do BO là tia phân giác của góc ABC)

Do đó ∆BOK = ∆BOF (cạnh huyền – góc nhọn).

Suy ra BK = BF (hai cạnh tương ứng)

•Ta có AB = AK + KB, BI = BF + FI

Mà BK = BF, AK = IF (=AH)

Từ đó suy ra AB = BI nên tam giác BAI cân tại B.

Vậy tam giác BAI cân tại B.

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close