Giải bài 10 trang 47 sách bài tập toán 12 - Cánh diềuLập phương trình mặt phẳng (left( P right)) trong mỗi trường hợp sau: a) (left( P right)) đi qua điểm (Ileft( {2;1; - 4} right)) và có vectơ pháp tuyến là (overrightarrow n = left( {3; - 4;5} right)); b) (left( P right)) đi qua điểm (Ileft( {5; - 2;1} right)) và có cặp vectơ chỉ phương là (overrightarrow a = left( {3; - 1;4} right),overrightarrow b = left( {0;2; - 1} right)); c) (left( P right)) đi qua ba điểm (Aleft( {0;3;7} right),Bleft( {2; - 5; Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau: a) \(\left( P \right)\) đi qua điểm \(I\left( {2;1; - 4} \right)\) và có vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 4;5} \right)\); b) \(\left( P \right)\) đi qua điểm \(I\left( {5; - 2;1} \right)\) và có cặp vectơ chỉ phương là \(\overrightarrow a = \left( {3; - 1;4} \right),\overrightarrow b = \left( {0;2; - 1} \right)\); c) \(\left( P \right)\) đi qua ba điểm \(A\left( {0;3;7} \right),B\left( {2; - 5;4} \right)\) và \(C\left( {1; - 4; - 1} \right)\). Phương pháp giải - Xem chi tiết ‒ Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vectơ pháp tuyến: Mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\). ‒ Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \): Bước 1: Tìm \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\). Bước 2: Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n \) làm vectơ pháp tuyến. ‒ Lập phương trình tổng quát của mặt phẳng đi qua ba điểm không thẳng hàng \(H,I,K\): Bước 1: Tìm cặp vectơ chỉ phương của mặt phẳng là \(\overrightarrow {HI} \) và \(\overrightarrow {HK} \). Bước 2: Tìm \(\overrightarrow n = \left[ {\overrightarrow {HI} ,\overrightarrow {HK} } \right]\). Bước 3: Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(H\) và nhận \(\overrightarrow n \) làm vectơ pháp tuyến. Lời giải chi tiết a) Phương trình mặt phẳng \(\left( P \right)\) là: \(3\left( {x - 2} \right) - 4\left( {y - 1} \right) + 5\left( {z + 4} \right) = 0 \Leftrightarrow 3{\rm{x}} - 4y + 5z + 18 = 0\). b) Ta có: \(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( { - 7;3;6} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Phương trình mặt phẳng \(\left( P \right)\) là: \( - 7\left( {x - 5} \right) + 3\left( {y + 2} \right) + 6\left( {z - 1} \right) = 0 \Leftrightarrow - 7x + 3y + 6z + 35 = 0\). c) Ta có: \(\overrightarrow {AB} = \left( {2; - 8; - 3} \right),\overrightarrow {AC} = \left( {1; - 7; - 8} \right)\). Khi đó, \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {43;13; - 6} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\). Phương trình mặt phẳng \(\left( P \right)\) là: \(43\left( {x - 0} \right) + 13\left( {y - 3} \right) - 6\left( {z - 7} \right) = 0 \Leftrightarrow 43x + 13y - 6z + 3 = 0\).
Quảng cáo
|