Giải bài 1 trang 88 sách bài tập toán 11 - Cánh diều

Cho hình lăng trụ \(ABC.A'B'C'\) có \(ABC\) là tam giác đều và \(ABB'A'\) là hình chữ nhật

Quảng cáo

Đề bài

Cho hình lăng trụ \(ABC.A'B'C'\) có \(ABC\) là tam giác đều và \(ABB'A'\) là hình chữ nhật. Gọi M là trung điểm của BC (Hình 4).

 

a) Số đo giữa hai đường thẳng \(AB\) và \(B'C'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

b) Số đo giữa hai đường thẳng \(AB\) và \(CC'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

c) Số đo giữa hai đường thẳng \(AM\) và \(A'C'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

Phương pháp giải - Xem chi tiết

Dựa vào các cách xác định góc giữa hai đường thẳng đã học để làm.

Lời giải chi tiết

a) Do \(ABC\) là tam giác đều nên \(\widehat {ABC} = {60^0}.\)

Ta có: \(BC\)// \(B'C'\) nên \(\left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^0}.\)

Đáp án C.

b) Do \(ABB'A'\) là hình chữ nhật nên \(\widehat {ABB'} = {90^0}.\)

Ta có: \(BB'\)// \(CC'\) nên \(\left( {AB,CC'} \right) = \left( {AB,BB'} \right) = \widehat {ABB'} = {90^0}.\)

Đáp án D.

c) Do \(ABC\) là tam giác đều nên \(\widehat {MAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}{.60^0} = {30^0}.\)

Ta có: \(AC\)// \(A'C'\) nên \(\left( {AM,A'C'} \right) = \left( {AM,AC} \right) = \widehat {MAC} = {30^0}.\)

Đáp án A.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close