Giải bài 1 trang 70 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho các mệnh đề: P: “Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt”; Quảng cáo
Đề bài Cho các mệnh đề: P: “Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt”; Q: “Phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức\(\Delta = {b^2} - 4ac > 0\)”. a) Hãy phát biểu các mệnh đề: P => Q, Q => P, P ⇔ Q, => . Xét tính đúng sai của các mệnh đề này. b) Dùng các khái niệm "điều kiện cần” và "điều kiện đủ” để diễn tả mệnh đề P => Q. c) Gọi X là tập hợp các phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt, Y là tập hợp các phương trình bậc hai \(a{x^2} + bx + c\) có hệ số a và c trái dấu. Nêu mối quan hệ giữa hai tập hợp X và Y. Lời giải chi tiết a) + Mệnh đề P => Q: Nếu phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt thì nó có biệt thức \(\Delta = {b^2} - 4ac > 0\). Mệnh đề này đúng. + Mệnh đề Q => P: Nếu phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức \(\Delta = {b^2} - 4ac > 0\) thì nó có hai nghiệm phân biệt. Mệnh đề này đúng. + Mệnh đề P ⇔ Q: Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt khi và chỉ khi nó có có biệt thức \(\Delta = {b^2} - 4ac > 0\). Mệnh đề này đúng. + Mệnh đề : Phương trình bậc hai \(a{x^2} + bx + c\) không có hai nghiệm phân biệt thì nó có biệt thức \(\Delta = {b^2} - 4ac > 0\). Mệnh đề này đúng. b) + Phương trình bậc hai \(a{x^2} + bx + c\) có hai nghiệm phân biệt là điều kiện đủ để nó có biệt thức \(\Delta = {b^2} - 4ac > 0\) + Phương trình bậc hai \(a{x^2} + bx + c\) có biệt thức \(\Delta = {b^2} - 4ac > 0\) là điều kiện cần để nó có hai nghiệm phân biệt c) Các phương trình bậc hai \(a{x^2} + bx + c\) có hệ số a và c trái dấu thì luôn có 2 nghiệm trái dấu. Vậy \(Y \subset X\)
Quảng cáo
|