Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Một công ty bảo hiểm thống kê lại độ tuổi các khách hàng mua bảo hiểm xe ô tô ở bảng sau: Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Một công ty bảo hiểm thống kê lại độ tuổi các khách hàng mua bảo hiểm xe ô tô ở bảng sau:

Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:

Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x  = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).

+ Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)  

Lời giải chi tiết

Bảng tần số ghép nhóm gồm các giá trị đại diện của nhóm là:

Cỡ mẫu \(n = 233\)

Số trung bình của mẫu số liệu là:

\(\overline x  = \frac{{27,5.25 + 32,5.38 + 37,5.62 + 42,5.42 + 47,5.37 + 52,5.29}}{{233}} \approx 39,97\)

Nhóm chứa mốt của mẫu số liệu là \(\left[ {35;40} \right)\).

Do đó, \({u_m} = 35,{n_{m - 1}} = 38,{n_m} = 62,{n_{m + 1}} = 42,{u_{m + 1}} - {u_m} = 40 - 35 = 5\)

Mốt của mẫu số liệu là: \({M_O} = 35 + \frac{{62 - 38}}{{\left( {62 - 38} \right) + \left( {62 - 42} \right)}}.5 = \frac{{415}}{{11}}\)

Gọi \({x_1},{x_2},...,{x_{233}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{25}} \in \left[ {25;30} \right),{x_{26}},...,{x_{63}} \in \left[ {30;35} \right),{x_{64}},...,{x_{125}} \in \left[ {35;40} \right),{x_{126}},...,{x_{167}} \in \left[ {40;45} \right),\)

\({x_{168}},...,{x_{204}} \in \left[ {45;50} \right),{x_{205}},...,{x_{233}} \in \left[ {50;55} \right)\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ hai của mẫu số liệu là \({x_{117}}\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {35;40} \right)\).

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:

\({Q_2} = 35 + \frac{{\frac{{233}}{2} - \left( {25 + 38} \right)}}{{62}}.\left( {40 - 35} \right) = \frac{{4\;875}}{{124}}\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{58}} + {x_{59}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {30;35} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 30 + \frac{{\frac{{233}}{4} - 25}}{{38}}.\left( {35 - 30} \right) = \frac{{275}}{8}\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{175}} + {x_{176}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {45;50} \right)\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 45 + \frac{{\frac{{3.233}}{4} - \left( {25 + 38 + 62 + 42} \right)}}{{37}}.\left( {50 - 45} \right) = \frac{{6\;815}}{{148}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close