Đề thi vào 10 môn Toán Quảng Bình năm 2019Tải vềCâu 1 (2 điểm): Cho biểu thức Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Câu 1 (2 điểm): Cho biểu thức \(A = \dfrac{1}{y} + \dfrac{2}{{y + 1}} - \dfrac{1}{{{y^2} + y}}.\) a) Tìm điều kiện xác định và rút họn biểu thức \(A.\) b) Tìm giá trị nguyên của \(y\) để \(A\) nhận giá trị nguyên. Câu 2 (1,5 điểm): Cho hàm số \(y = \left( {a - 2} \right)x + 5\) có đồ thị là đường thẳng \(d.\) a) Với giá trị nào của \(a\) thì hàm số trên đồng biến trên \(\mathbb{R}.\) b) Tìm \(a\) để đường thẳng \(d\) đi qua điểm \(M\left( {2;3} \right)\). Câu 3 (2 điểm): Cho phương trình \({x^2} - \left( {m + 1} \right)x + 2m - 2 = 0\,\,\,\,\left( 1 \right)\) (với \(m\) là tham số). a) Giải phương trình \(\left( 1 \right)\) khi \(m = 2.\) b) Tìm giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(3\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = 10.\) Câu 4 (1,0 điểm): Cho \(x,y\) là hai số thực dương thỏa mãn \(x + y = \dfrac{{2020}}{{2019}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{2019}}{x} + \dfrac{1}{{2019y}}\) Câu 5 (3,5 điểm): Từ một điểm \(A\) nằm ngoài đường tròn tâm \(O,\) ta kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn (\(B,\,\,C\) là các tiếp điểm). Trên cung nhỏ \(BC\) lấy một điểm \(M\left( {M \ne B,\,\,M \ne C} \right),\) kẻ \(MI \bot AB,\,\,MK \bot AC\,\,\left( {I \in AB,\,\,K \in AC} \right).\) a) Chứng minh \(AIMK\) là tứ giác nội tiếp đường tròn. b) Kẻ \(MP \bot BC\,\,\left( {P \in BC} \right).\) Chứng minh rằng \(\angle MPK = \angle MBC.\) c) Xác định vị trí của \(M\) trên cung nhỏ \(BC\) để tích \(MI.MK.MP\) đạt giá trị lớn nhất. Lời giải Câu 1 (TH): Phương pháp: a) Sử dụng hằng đẳng thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,A \ge 0\\ - A\,\,\,khi\,\,A < 0\end{array} \right.\) Thực hiện các phép tính với căn bậc hai. b) Xác định mẫu thức chung của biểu thức Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức. Cách giải: a) \(P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\) \(\begin{array}{l}P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\\\,\,\,\,\, = \sqrt {{2^2}.3} - \sqrt {{3^2}.3} + \sqrt {{4^2}.3} \\\,\,\,\,\, = 2\sqrt 3 - 3\sqrt 3 + 4\sqrt 3 \\\,\,\,\,\, = 3\sqrt 3 .\end{array}\) Vậy \(P = 3\sqrt 3 .\) b) \(Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\) với \(x \ge 0,\,\,x \ne 1.\) Điều kiện: \(x \ge 0,\,\,x \ne 1.\) \(\begin{array}{l}Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \sqrt x } \right)\left( {5 + \sqrt x } \right)\\\,\,\,\, = 25 - x.\end{array}\) Vậy \(Q = 25 - x\) khi \(x \ge 0,\,\,x \ne 1.\) Câu 2 (TH): Phương pháp: a) Hàm số \(y = ax + b\) nghịch biến trên \(\mathbb{R} \Leftrightarrow a < 0\) b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\) Sử dụng phương pháp thế, tìm được nghiệm \(y\) Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình. Cách giải: a) Hàm số \(y = \left( {n - 1} \right)x + 2\) nghịch biến trên \(\mathbb{R}\) \( \Leftrightarrow n - 1 < 0\) \( \Leftrightarrow n < 1.\) Vậy \(n < 1\) thì hàm số đã cho nghịch biến trên \(\mathbb{R}.\) b) \(\left\{ \begin{array}{l}2x + 3y = 8\\ - 4x + 3y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6x = 6\\y = \dfrac{{8 - 2x}}{3}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = \dfrac{{8 - 2.1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) Vậy hệ phương trình có tập nghiệm \(S = \left\{ {\left( {1;\,\,2} \right)} \right\}.\) Câu 3 (VD): Phương pháp: a) Tính nhẩm nghiệm của phương trình bậc hai: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = - 1;{x_2} = - \dfrac{c}{a}\) b) Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt \(\Delta > 0\) (hoặc \(\Delta ' > 0\)) Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(n\) Thay vào \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014.\), ta tìm được \(n\) Cách giải: a) Với \(n = 1\) ta có phương trình \(\left( 1 \right)\) trở thành: \({x^2} + 6x + 5 = 0\) Phương trình có \(a - b + c = 1 - 6 + 5 = 0\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = - 1\) và \({x_2} = - \dfrac{c}{a} = - 5.\) Vậy với \(n = 1\) thì phương trình đã cho có tập nghiệm \(S = \left\{ { - 5; - 1} \right\}.\) b) Xét phương trình \({x^2} + 6x + n + 4 = 0\,\,\,\,\left( 1 \right)\) Phương trình có: \(\Delta ' = 9 - n - 4 = 5 - n.\) Phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) \( \Leftrightarrow \Delta ' > 0\) \( \Leftrightarrow 5 - n > 0\) \( \Leftrightarrow n < 5.\) Với \(n < 5\) thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\) Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 6\\{x_1}{x_2} = n + 4\end{array} \right..\) Theo đề bài ta có: \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014\) \(\begin{array}{l} \Leftrightarrow 2020.\left( { - 6} \right) + 2021.\left( {n + 4} \right) = - 2014\\ \Leftrightarrow - 12120 + 2021n + 8084 = - 2014\\ \Leftrightarrow 2021n = 2022\\ \Leftrightarrow n = \dfrac{{2022}}{{2021}}\,\,\,\left( {tm} \right).\end{array}\) Vậy \(n = \dfrac{{2022}}{{2021}}\) thỏa mãn bài toán. Câu 4 (VDC): Phương pháp: Áp dụng bất đẳng thức Cô – si cho \(\sqrt {9a\left( {8a + b} \right)} \) và \(\sqrt {9b\left( {8b + a} \right)} \) Từ đó, suy ra \(\sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \) sau đó, suy ra được \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }}\) Cách giải: Áp dụng BĐT Cô-si ta có: \(\begin{array}{l}\sqrt {9a\left( {8a + b} \right)} \le \dfrac{{9a + 8a + b}}{2} = \dfrac{{17a + b}}{2}\\\sqrt {9b\left( {8b + a} \right)} \le \dfrac{{9b + 8b + a}}{2} = \dfrac{{17b + a}}{2}\\ \Rightarrow \sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \le \dfrac{{17a + b}}{2} + \dfrac{{17b + a}}{2} = 9\left( {a + b} \right)\\ \Rightarrow \sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} \le 3\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}\,\,\,\left( {dpcm} \right).\end{array}\) Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}9a = 8a + b\\9b = 8b + a\end{array} \right. \Leftrightarrow a = b.\) Vậy \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}.\) Câu 5 (VD): Phương pháp: a) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp. b) Ta sẽ chứng minh: \(\angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right);\angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\) Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\) Chứng minh được: c) Áp dụng hệ thức lượng trong \(\Delta APB\)ta có:\(A{P^2} = AH.AB\) Áp dụng định lý Py – ta – go cho \(\Delta APB\): \(B{P^2} + A{P^2} = A{B^2} = 4{R^2}\) \( \Rightarrow BE.BF + AH.AB = 4{R^2}\) (đpcm) Cách giải:
a) Ta có: \(\angle AFB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right).\) \( \Rightarrow \angle AFB = {90^0}\) Xét tứ giác \(AHEF\) ta có: \(\angle AFE + \angle AHE = {90^0} + {90^0} = {180^0}\) \( \Rightarrow AHEF\) là tứ giác nội tiếp. (dhnb) b) Ta có: \(AHEF\) là tứ giác nội tiếp (cmt) \( \Rightarrow \angle FAH + \angle FEH = {180^0}\) (tính chất tứ giác nội tiếp) Lại có: \(\angle PEB = \angle FEH\) (hai góc đối đỉnh). \( \Rightarrow \angle PEB + \angle FAB = {180^0}\) \( \Rightarrow \angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right)\) Mà \(ABPF\) là tứ giác nội tiếp đường tròn \(\left( {O;\,\,R} \right)\) \( \Rightarrow \angle FAB + \angle BPF = {180^0}\) \( \Rightarrow \angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\) Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\) Xét \(\Delta BEP\) và \(\Delta BPF\) ta có: \(\begin{array}{l}\angle FBB = \angle PEB\,\,\,\left( {cmt} \right)\\\angle B\,\,chung\\ \Rightarrow \Delta BEP \backsim \Delta BPF\,\,\,\left( {g - g} \right).\end{array}\) c) Ta có: \(\Delta BEP \backsim \Delta BPF\,\,\,\left( {cmt} \right)\) \( \Rightarrow \dfrac{{BE}}{{BP}} = \dfrac{{BP}}{{BF}} \Rightarrow B{P^2} = BE + BF.\) Vì \(\angle APB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right)\) \(\angle APB = {90^0}\) hay \(AP \bot PB\) Áp dụng hệ thức lượng cho \(\Delta APB\) vuông tại \(P\) có đường cao \(PH\) ta có: \(A{P^2} = AH.AB\) \( \Rightarrow BE.BF + AH.AB = B{P^2} + A{P^2}\) Áp dụng định lý Pitago cho \(\Delta APB\) vuông tại \(P\) ta có: \(\begin{array}{l}B{P^2} + A{P^2} = A{B^2} = {\left( {2R} \right)^2} = 4{R^2}\\ \Rightarrow BE.BF + AH.AB = 4{R^2}\,\,\,\,\left( {dpcm} \right).\end{array}\)
Quảng cáo
|