Đề thi vào 10 môn Toán Ninh Thuận năm 2021

Tải về

Bài 1 (2,0 điểm): Giải các phương trình, hệ phương trình:

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1 (2,0 điểm): Giải các phương trình, hệ phương trình:

1) \(2x - 1 = x - \dfrac{1}{3}\)                                          2) \(\left\{ \begin{array}{l}3x + y = 4\\7x - 5y =  - 9\end{array} \right.\)

Bài 2 (2,0 điểm):

1) Vẽ đồ thị \(\left( P \right)\) của hàm số \(y =  - \dfrac{1}{4}{x^2}.\)

2) Tìm điều kiện của \(m\) đề đường thẳng \(\left( d \right):\,\,y =  - x + m\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ trái dấu.

Bài 3 (2,0 điểm): Bạn Hoàng làm việc tại nhà hàng nọ, bạn ấy được trả tám trăm ngàn đồng cho 40 giờ làm việc tại quán trong một tuần. Mỗi giờ làm thêm trong tuần bạn được trả bằng 150% số tiền mà mỗi giờ bạn ấy được trả trong 40 giờ đầu. Nếu trong tuần đó bạn Hoàng được trả chín trăm hai mươi nghìn đồng thì bạn ấy đã phải làm thêm bao nhiêu giờ?

Bài 4 (4 điểm): Cho tam giác \(ABC\) có các góc \(\angle ABC,\,\,\angle ACB\) nhọn và \(\angle BAC = {60^0}.\) Các đường phân giác trong \(BE,\,\,CF\) của \(\Delta ABC\) cắt nhau tại \(I.\)

1) Chứng minh tứ giác \(AEIF\) nội tiếp.

2) Gọi \(K\) là giao điểm thứ hai \(\left( {K \ne B} \right)\) của đường thẳng \(BC\) với đường tròn ngoại tiếp tam giác \(BFI.\) Chứng minh rằng \(\Delta AFK\) cân tại F.

Lời giải

Bài 1 (TH):

Phương pháp:

1) Đưa phương trình ban đầu về dạng \(ax + b = 0\) để tìm nghiệm của phương trình.

2) Vận dụng phương pháp cộng đại số để tìm nghiệm của hệ phương trình.

Cách giải:

1) \(2x - 1 = x - \dfrac{1}{3}\)

\(\begin{array}{l} \Leftrightarrow 2x - x =  - \dfrac{1}{3} + 1\\ \Leftrightarrow x = \dfrac{2}{3}\end{array}\)

Vậy phương trình có nghiệm \(x = \dfrac{2}{3}\).

2) \(\left\{ \begin{array}{l}3x + y = 4\\7x - 5y =  - 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}15x + 5y = 20\\7x - 5y =  - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}22x = 11\\y = 4 - 3x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = 4 - \dfrac{3}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = \dfrac{5}{2}\end{array} \right.\)

Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {\dfrac{1}{2};\dfrac{5}{2}} \right)\).

Bài 2 (VD):

Phương pháp:

1) Lập bảng giá trị tương ứng của \(x\) và \(y\) sau đó vẽ đồ thị hàm số của hàm số \(\left( P \right)\).

2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\)

\(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ trái dấu \( \Leftrightarrow \) phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) có hai nghiệm trái dấu \( \Leftrightarrow ac < 0\)

Cách giải:

1) Ta có bảng giá trị:

\(x\)

\( - 4\)

\( - 2\)

\(0\)

\(2\)

\(4\)

\(y =  - \dfrac{1}{4}{x^2}\)

\( - 4\)

\( - 1\)

\(0\)

\( - 1\)

\( - 4\)

Vậy đồ thị hàm số \(\left( P \right):\,\,y =  - \dfrac{1}{4}{x^2}\) là đường cong đi qua các điểm: \(\left( { - 4;\,\, - 4} \right),\,\,\left( { - 2;\,\, - 1} \right),\,\,\left( {0;\,\,0} \right),\,\,\left( {2;\,\, - 1} \right)\) và \(\left( {4;\,\, - 4} \right).\)

 

2) Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right):\) 

\( - \dfrac{1}{4}{x^2} =  - x + m\) \( \Leftrightarrow {x^2} - 4x + 4m = 0\,\,\,\left( * \right)\)

\(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ trái dấu \( \Leftrightarrow \left( * \right)\) có hai nghiệm trái dấu \( \Leftrightarrow 1.4m < 0 \Leftrightarrow m < 0.\)

Vậy \(m < 0\) thỏa mãn bài toán.

Bài 3 (VD):

Phương pháp:

Giải bài toán bằng cách lập phương trình,cụ thể gọi số giờ bạn Hoàng đã làm thêm trong tuần là \(x\) (giờ) (ĐK: \(x > 0\)), từ giả thiết của đề bài lập phương trình, giải phương trình sau đó đối chiếu điều kiện và kết luận.

Cách giải:

Gọi số giờ bạn Hoàng đã làm thêm trong tuần là \(x\) (giờ) (ĐK: \(x > 0\)).

Bạn Hoàng được trả 800 nghìn đồng cho 40 giờ làm việc trong tuần nên mỗi giờ làm việc trong tuần bạn Hoàng nhận được \(\dfrac{{800}}{{40}} = 20\) (nghìn đồng).

Vì mỗi giờ làm thêm trong tuần Hoàng được trả bằng 150% số tiền mà mỗi giờ bạn ấy được trả trong 40 giờ đầu tiên nên mỗi giờ làm thêm trong tuần Hoàng nhận được \(20.150\%  = 30\) (nghìn đồng).

Suy ra tổng số tiền Hoàng nhận được (tính cả làm thêm) trong mỗi tuần là: \(800 + 30x\) (nghìn đồng).

Vì trong tuần đó bạn Hoàng được trả chín trăm hai mươi nghìn đồng nên ta có phương trình

\(800 + 3x = 920 \Leftrightarrow 3x = 120 \Leftrightarrow x = 4\) (thỏa mãn).

Vậy Hoàng đã làm thêm 4 giờ.

Bài 4 (VDC):

Phương pháp:

1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: tứ giác có tổng hai góc đối diện bẳng \({180^0}\) là tứ giác nội tiếp.

2) Vận dụng tính chất của tứ giác nội tiếp, mối quan hệ của góc – đường tròn.

Cách giải:

 

1) Ta có: \(\angle BAC = {60^0}\)

\( \Rightarrow \angle ABC + \angle BCA = {120^0}\) (tổng ba góc trong tam giác bằng \({180^0}\))

\(\begin{array}{l} \Rightarrow \dfrac{1}{2}\left( {\angle ABC + \angle BCA} \right) = {60^0}\\ \Leftrightarrow \angle {B_2} + \angle {C_2} = {60^0}\end{array}\)

\( \Rightarrow \angle BIC = {180^0} - \left( {\angle {B_2} + {C_2}} \right) = {120^0}\)  (tổng ba góc trong tam giác bằng \({180^0}\))

\( \Rightarrow \angle FIE = \angle BIC = {120^0}\) (hai góc đối đỉnh)

Xét tứ giác \(AEIF\) ta có:

\(\angle BAC + \angle EIF = {60^0} + {120^0} = {180^0}\)

\( \Rightarrow AEIF\) là tứ giác nội tiếp. (tứ giác có tổng hai góc đối diện bẳng \({180^0}\))

2) Ta có: Tứ giác \(BFIK\) nội tiếp \( \Rightarrow \angle FKB = \angle FIB\) (hai góc nội tiếp cùng chắn cung \(BF\))

\(\begin{array}{l} \Rightarrow \angle FKB = \angle FIB = {180^0} - \angle EIB = {60^0}\\ \Rightarrow \angle FAC = \angle FKB = {60^0}\end{array}\)

\( \Rightarrow AFKC\) là tứ giác nội tiếp. (tứ giác có hai đỉnh kề 1 cạnh nhìn cạnh đối diện dưới các góc bằng nhau).

\( \Rightarrow \angle FAK = FCK\) (hai góc nội tiếp cùng chắn cung \(FK\))

Và \(\angle FKA = \angle FCA\) (hai góc nội tiếp cùng chắn cung \(AF\))

Mà \(\angle FCA = \angle FCK\) (\(CF\) là phân giác góc \(\angle KCA\))

\( \Rightarrow \angle FAK = \angle FKA\,\,\left( { = \angle FCA} \right)\)

\( \Rightarrow \Delta AKF\) cân tại \(F\) (đpcm).

Tải về

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close