Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Hình học 8

Quảng cáo

Đề bài

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm củ các cạnh AB, BC, CD và DA

a) Chứng minh: tứ giác MNPQ là hình bình hành.

b) Chứng minh: SMNPQ=12SABCD.SMNPQ=12SABCD.

Phương pháp giải - Xem chi tiết

Sử dụng:

Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành

Diện tích tam giác bằng nửa tích đường cao với cạnh đáy tương ứng

Lời giải chi tiết

a) Ta có MN là đường trung bình của ΔABC

MN//ACMN=12AC

Tương tự QP//ACQP=12AC

Do đó MN//QP và MN = QP

Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: SBMN=14SABC (do chiều cao hạ từ đỉnh B của tam giác ABC gấp 2 lần chiều cao hạ từ B của tam giác BMN và đáy AC=2MN)

Tương tự: SDPQ=14SACD

SBMN+SDPQ=14(SABC+SACD)=14SABCD.

Tương tự SCNP+SAMQ=14SABCD

Do đó: SBMN+SDQP+SCNP+SAMQ=12SABCD.

Vậy: SMNPQ=12SABCD.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

close