Bài 30 trang 126 SGK Toán 8 tập 1

Trên hình 143 ta có hình thang ABCD với đường trung bình EF và hình chữ nhật GHIK

Quảng cáo

Đề bài

Trên hình \(143\) ta có hình thang \(ABCD\) với đường trung bình \(EF\) và hình chữ nhật \(GHIK.\) Hãy so sánh diện tích hai hình này, từ đó suy ra một cách chứng minh khác về công thức diện tích hình thang. 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Diện tích hình chữ nhật có hai kích thước \(a,b\) là \(S=ab\)

- Diện tích hình thang bằng một nửa tích của tổng hai đáy với chiều cao.

$$S = {1 \over 2}\left( {a + b} \right).h$$

Lời giải chi tiết

Ta có hình thang \(ABCD\) (\( AB// CD\)), với đường trung bình \(EF\) và hình chữ nhật \(GHIK\) như hình vẽ .

Xét hai tam giác vuông: \(∆AEG\) và \(∆DEK\) có: 

+) \(AE = ED\) (do \(E\) là trung điểm của \(AD\))

+) \(\widehat {A{\rm{E}}G} = \widehat {DEK}\) (đối đỉnh)

\( \Rightarrow  ∆AEG = ∆DEK\) (cạnh huyền-góc nhọn)

Suy ra \({S_{AEG}}={S_{DEK}}\)

Xét hai tam giác vuông: \(∆BFH\) và \(∆CFI\) có:

+) \(BF = FC\) (do \(F\) là trung điểm của \(BC\))

+) \(\widehat {B{\rm{F}}H} = \widehat {CFI}\) (đối đỉnh)

\( \Rightarrow ∆BFH = ∆CFI\) (cạnh huyền-góc nhọn) 

\( \Rightarrow {S_{BFH}}={S_{CFI}}\)

Do đó \({S_{ABCD}} = {S_{AEKIFB}} + {S_{DEK}} + {S_{CFI}} \)\(\,= {S_{AEKIFB}} + {S_{AEG}} + {S_{BFH}} = {S_{GHIK}}\)

Nên:

\({S_{ABCD}} = {S_{GHIK}} =GH.HI= EF.HI\) (do \(GH=EF\)) mà \(EF = \dfrac{{AB + CD}}{2}\) (tính chất đường trung bình hình thang ABCD)

Do đó \({S_{ABCD}} = \dfrac{{AB + CD}}{2}.HI\)

Gọi \(AJ\) là chiều cao của hình thang \(ABCD\) thì \(AJ=HI,\) từ đó suy ra:

\({S_{ABCD}} = \dfrac{{AB + CD}}{2}.AJ\)

Vậy ta gặp lại công thức tính diện tích hình thang đã được học nhưng bằng một phương pháp chứng minh khác. Mặt khác, ta phát hiện công thức mới : Diện tích hình thang bằng tích của đường trung bình hình thang với chiều cao.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close