Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 9Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 9 Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1. Cho hàm số \(y = - x + b.\) Tìm b, biết rằng khi \(x = 1\) thì \(y = 5\). Bài 2. Chứng minh hàm số \(y = - \sqrt 3 x + 1\) nghịch biến trên \(\mathbb R\) bằng định nghĩa Bài 3. Tìm m để hàm số \(y = \left( {1 - 2m} \right)x\) đồng biến trên \(\mathbb R\). Bài 4. Cho hàm số \(y = f\left( x \right) = \left( {\sqrt 2 - 1} \right)x + \sqrt 2 \) So sánh : \(f\left( {\sqrt 2 + 1} \right)\) và \(f\left( {\sqrt 2 + 2} \right)\) LG bài 1 Phương pháp giải: Thay \(x=1;y=5\) vào hàm số đã cho để tìm \(b\). Lời giải chi tiết: Thay \(x=1;y=5\) vào hàm số đã cho, ta có: \(5 = -1 + b ⇒ b = 6.\) LG bài 2 Phương pháp giải: Giả sử \({x_1} < {x_2}\) và \({x_1},{x_2} \in \mathbb R\). Xét hiệu \(H = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\). + Nếu \(H < 0\) thì hàm số đồng biến trên \(\mathbb R \) + Nếu \(H > 0\) thì hàm số nghịch biến trên \(\mathbb R \) Lời giải chi tiết: Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\). Ta có: \(\eqalign{ & f\left( {{x_1}} \right) = - \sqrt 3 {x_1} + 1 \cr & f\left( {{x_2}} \right) = - \sqrt 3 {x_2} + 1 \cr & f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = - \sqrt 3 \left( {{x_1} - {x_2}} \right) > 0\cr&\left( {\text{Vì }\,{x_1} < {x_2} \Rightarrow {x_1} - {x_2} < 0} \right) \cr & \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right) \cr} \) Vậy hàm số nghịch biến trên \(\mathbb R\). LG bài 3 Phương pháp giải: Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau: a) Đồng biến trên R khi \(a > 0\) b) Nghịch biến trên R khi \(a < 0.\) Lời giải chi tiết: Hàm số đồng biến trên \(\mathbb R\) \( \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < {1 \over 2}\) LG bài 4 Phương pháp giải: Sử dụng tính chất của hàm số đồng biến. Lời giải chi tiết: Hàm số đã cho có hệ số \(a = \sqrt 2 - 1 > 0\) nên hàm số đồng biến trên \(\mathbb R\). Lại có : \(\sqrt 2 + 1 < \sqrt 2 + 2\) \( \Rightarrow f\left( {\sqrt 2 + 1} \right) < f\left( {\sqrt 2 + 2} \right)\) Loigiaihay.com
Quảng cáo
|