Cho dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,{u_{n + 1}} = {u_n} + \frac{2}{{{3^n}}},n \ge 1\). Đặt \({v_n} = {u_{n + 1}} - {u_n}.\)
Xem chi tiếtCho hàm số \(f\left( x \right) = \frac{{{{\sin }^2}x}}{{{x^2}}}\). Chứng minh rằng \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\)
Xem chi tiếtCho \(f(x) = \frac{{{x^2} - x}}{{|x|}}\). Khi đó, giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\) là
Xem chi tiếtCho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - \frac{n}{{n + 1}}} \right| \le \frac{1}{{{n^2}}}\).
Xem chi tiếtMột đơn vị sản xuất hàng thủ công ước tính chi phí để sản xuất x đơn vị sản phẩm là \(C\left( x \right) = 2x + 55\) (triệu đồng).
Xem chi tiếtGiới hạn \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{|x|}}\) là
Xem chi tiếtCho hàm số \(f(x) = \left\{ \begin{array}{l}2\,\,\,{\rm{khi}}\,\,\, - 1 < x \le 1\\1 - x\,\,{\rm{khi}}\,\,x \le - 1\,\,{\rm{hay}}\,\,x > 1\end{array} \right.\).
Xem chi tiếtXét hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} + 3x + 2}}{{x + 1}}\,\,{\rm{khi}}\,\,x \ne - 1\\m\,\,{\rm{khi}}\,\,\,x = - 1\end{array} \right.\)
Xem chi tiếtCho hàm số \(f(x) = \frac{{x(x - 1)}}{{\sqrt {x - 1} }}\). Hàm số này liên tục trên
Xem chi tiếtCho phương trình \({x^7} + {x^5} = 1\). Mệnh đề đúng là
Xem chi tiết