Biểu diễn các góc lượng giác sau trên đường tròn lượng giác: a) \( - {1965^0}\); b) \(\frac{{48\pi }}{5}\).
Xem chi tiếtTheo định luật khúc xạ ánh sáng, khi một tia sáng được chiếu tới mặt phân cách giữa hai môi trường trong suốt không đồng chất thì tỉ số \(\frac{{\sin i}}{{\sin r}}\), với i là góc tới và r là góc khúc xạ, là một hằng số phụ thuộc vào chiết suất của hai môi trường.
Xem chi tiếtMột chất điểm dao động điều hòa theo phương trình \(s = 3\sin \left( {\frac{\pi }{2}t} \right)\) với s tính bằng cm và t tính bằng giây. Dựa vào đồ thị của hàm số sin, hãy xác định ở các thời điểm t nào trong 4 giây đầu thì \(s \le - \frac{3}{2}\).
Xem chi tiếtCho \(\sin \alpha = \frac{3}{5},\cos \beta = \frac{{12}}{{13}}\) và \({0^0} < \alpha ,\beta < {90^0}\). Tính giá trị của biểu thức \(\sin \left( {\alpha + \beta } \right)\) và \(\cos \left( {\alpha - \beta } \right)\).
Xem chi tiếtTính giá trị của các biểu thức sau: a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\); b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}}\).
Xem chi tiếta) Góc lượng giác \( - {245^0}\) có cùng điểm biểu diễn trên đường tròn lượng giác với góc lượng giác nào sau đây? \( - {605^0}, - {65^0},{115^0},{205^0},{475^0}\).
Xem chi tiếtMột quả bóng được ném xiên một góc \(\alpha \left( {{0^0} \le \alpha \le {{90}^0}} \right)\) từ mặt đất với tốc độ \({v_0}\left( {m/s} \right)\).
Xem chi tiếtKhông sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau: a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\); b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).
Xem chi tiếta) Cho \(\tan \alpha + \cot \alpha = 2\). Tính giá của trị biểu thức \({\tan ^3}\alpha + {\cot ^3}\alpha \). b) Cho \(\sin \alpha + \cos \alpha = \frac{1}{4}\). Tính giá của trị biểu thức \(\sin \alpha .\cos \alpha \). c) Cho \(\sin \alpha + \cos \alpha = \frac{1}{2}\). Tính giá của trị biểu thức \({\sin ^3}\alpha + {\cos ^3}\alpha \).
Xem chi tiếtTrên đường tròn lượng giác, hãy biểu diễn các góc lượng giác có số đo có dạng là: a) \(\frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\); b) \(\frac{\pi }{4} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\).
Xem chi tiết