Câu hỏi:

Giá trị của \(C = \lim \frac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\) bằng:

  • A \( + \infty \)                    
  • B \( - \infty \)                   
  • C \(0\)
  • D \(1\)

Phương pháp giải:

Khi tìm \(\lim \frac{{f(n)}}{{g(n)}}\) ta chia cả tử và mẫu cho \({n^k}\), trong đó \(k\) là bậc lớn nhất của tử và mẫu.

\(\lim \frac{1}{{{n^k}}} = 0\) với \(k \in \mathbb{N}*\)

Chú ý: \(\left[ \begin{array}{l}\lim \frac{0}{a} = 0\\\lim \frac{a}{0} = \infty \end{array} \right.\) (a là số bất kì, \(a \in R\))

Lời giải chi tiết:

Chia cả tử và mẫu cho \({n^2}\) ta có được : \(C = \lim \frac{{\sqrt[4]{{\frac{3}{{{n^5}}} + \frac{1}{{{n^8}}}}} - \frac{1}{n}}}{{\sqrt {2 + \frac{3}{{{n^3}}} + \frac{1}{{{n^4}}}}  + \frac{1}{n}}} = 0\).

Chọn C.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay