Câu hỏi:
Cho \(a\) thỏa mãn: \({a^2} - 5a + 2 = 0\). Tính giá trị của biểu thức: \(P = {a^5} - {a^4} - 18{a^3} + 9{a^2} - 5a + 2017 + \left( {{a^4} - 40{a^2} + 4} \right):{a^2}\)
Phương pháp giải:
Biến đổi đa thức P để xuất hiện tổng: \({a^2} - 5a + 2 = 0\)
Lời giải chi tiết:
\(\begin{array}{l}P = {a^5} - {a^4} - 18{a^3} + 9{a^2} - 5a + 2017 + \left( {{a^4} - 40{a^2} + 4} \right):{a^2}\\\;\;\; = \left( {{a^5} - 5{a^4} + 2{a^3}} \right) + \left( {4{a^4} - 20{a^3} + 8{a^2}} \right) + \left( {{a^2} - 5a + 2} \right) + 2015 + \frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = {a^3}\left( {{a^2} - 5a + 2} \right) + 4{a^2}\left( {{a^2} - 5a + 2} \right) + 2015 + \frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = 2015 + \frac{{{a^4} - 40{a^2} + 4}}{{{a^2}}}\\\;\;\; = \frac{{{a^4} + 1975{a^2} + 4}}{4}.\end{array}\)
Theo đề bài ta có: \({a^2} - 5a = - 2 \Rightarrow {\left( {{a^2} - 5a} \right)^2} = 4 \Rightarrow {a^4} - 10{a^3} + 25{a^2} = 4\)
\(\begin{array}{l}P = \frac{{{a^4} + 1975{a^2} + 4}}{{{a^2}}}\\\;\;\; = \frac{{\left( {{a^4} - 10{{\rm{a}}^3} + 25{{\rm{a}}^2}} \right) + \left( {10{a^3} - 50{a^2} + 20a} \right) + \left( {4{a^2} - 20a + 8} \right) + 1996{a^2} - 4}}{{{a^2}}}\\\;\;\; = \frac{{4 + 10a\left( {{a^2} - 5a + 2} \right) + 4\left( {{a^2} - 5a + 2} \right) + 1996{a^2} - 4}}{{{a^2}}} = 1996\end{array}\)
Vậy \(P = 1996.\)
Chọn C.